1 |
Numerical study of conforming space-time methods for Maxwell’s equationsHauser, Julia I. M., Zank, Marco 13 December 2024 (has links)
Time-dependent Maxwell’s equations govern electromagnetics. Under certain conditions, we can rewrite these equations into a partial differential equation of second order, which in this case is the vectorial wave equation. For the vectorial wave equation, we examine numerical schemes and their challenges. For this purpose, we consider a space-time variational setting, that is, time is just another spatial dimension. More specifically, we apply integration by parts in time as well as in space, leading to a space-time variational formulation with different trial and test spaces. Conforming discretizations of tensor-product type result in a Galerkin–Petrov finite element method that requires a CFL condition for stability which we study. To overcome the CFL condition, we use a Hilbert-type transformation that leads to a variational formulation with equal trial and test spaces. Conforming space-time discretizations result in a new Galerkin–Bubnov finite element method that is unconditionally stable. In numerical examples, we demonstrate the effectiveness of this Galerkin–Bubnov finite element method. Furthermore, we investigate different projections of the right-hand side and their influence on the convergence rates. This paper is the first step toward a more stable computation and a better understanding of vectorial wave equations in a conforming space-time approach.
|
2 |
Schémas numériques d'ordre élevé en espace et en temps pour l'équation des ondes / High order numerical schemes in space and time for solving the wave equationAgut, Cyril 13 December 2011 (has links)
Mes travaux de thèse portent sur le développement de schémas numériques d'ordre élevé en temps et en espace pour la simulation de propagation des ondes. Nous avons proposé de discrétiser dans un premier temps l'équation des ondes par rapport au temps, en utilisant une technique de type équation modifiée. Puis nous avons utilisé une méthode d'éléments finis de type Galerkine discontinue pour la discrétisation en espace. En modifiant l'ordre de la discrétisation, nous avons construit des schémas tout aussi précis que ceux déjà existants pour un coût de mise en oeuvre très intéressant. Après avoir validé numériquement la nouvelle méthode, nous nous sommes intéressés à sa stabilité ainsi qu'à son adaptivité en temps et en espace. Pour arriver à cela, nous avons dû faire une étude précise de la stabilité de la méthode de Galerkine discontinue et nous avons proposé des améliorations à cette technique entraînant des gains de temps significatifs. / My work consists in developing some high order numerical schemes in time and space for the modeling of the wave propagation. We have proposed to first discretize the wave equation with respect to the time using the so called Modified Equation Technique. Then, we have used a Discontinuous Galerkine Finite Element method for the space discretization. Switching the classical discretization process, we have constructed schemes as accurate as the classical ones with a numerical cost very interesting. After the numerical validation of this method, we have focused on its stability and on its adaptibility in time and space. To reach these objectives, we have performed a stability analysis of the Discontinuous Galerkin method and we have proposed some improvements to this technique which imply very important gain in terms of computationnal time.
|
Page generated in 0.059 seconds