• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 3
  • 2
  • 2
  • Tagged with
  • 31
  • 16
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electrochemical and ion transport characterisation of a nanoporous carbon derived from SiC

Zuleta, Marcelo January 2005 (has links)
In this doctoral project, a relatively new form of carbon material, with unique narrow pore size distribution around 7 Å and with uniform structure, has been electrochemically characterised using the single particle microelectrode technique. The carbon has been used as electrode material for supercapacitors. This type of capacitors is used as high power energy buffers in hybrid vehicles and for stationary power backup. The principle for the microelectrode technique consists of connecting a carbon particle with a carbon fibre by means of a micromanipulator. The single particle and carbon fibre together form a microelectrode. Combination of this technique with electroanalytical methods such as cyclic voltammetry and potential step measurements allows for the survey of electrochemical phenomena and for the determination of ion transport parameters inside the nanopores. A mathematical model based on Fick’s second law, for diffusion of ions inside the nanopores at non steady state, was used for the determination of effective diffusion coefficients (Deff). The coefficients were calculated from an asymptotic solution of Fick’s equation, applied for a thin layer adjacent to the external surface of the carbon particles and valid for the current response in a short time region. Another asymptotic solution was obtained, using spherical geometry and valid for the current response in a long time region. In this doctoral work, the carbon particles have been exposed to potential cycling, which mimics that of large electrodes during operation of a double layer capacitor. The potential-current response, E-I, for the nanoporous carbon, shows a pure capacitive behaviour between –0.5 V and 0.1 V vs. the Hg|HgO reference electrode. The detection of the faradaic processes beyond these potentials was possible by lowering of the voltammometric sweep rate. The electrochemical processes occurring at positive and at negative potential were investigated separately. Cyclic voltammometric measurements showed that the chemisorption of hydroxyl groups, occurring between 0.1 and 0.3 V, leads to a mild oxidation of the carbon structure, resulting in surface groups containing an oxygen atom at a specific carbon site (e.g., phenolic or quinine type). These oxygen-containing surface groups caused an increase of the specific capacitance, which remained constant throughout a number of voltammometric cycles. The Deff decreased on the other hand with the number of cycles. The Deff decreases also with the positive potential. The evaluation of Deff indicates adsorption of hydroxyl groups and an increase of the effective tortuosity of the pore system. The oxidation of the carbon particles, between 0 and 0.5 V, leads to more extensive oxidation and to surface groups containing two oxygen atoms at a single carbon site, followed by formation of carbonate ions. The oxygen-containing surface groups and carbonate ions formed at these potentials do not contribute to the specific capacitance and drastically retard or obstruct the ion transport inside the nanopores. At negative potentials the carbon particles show a dominantly capacitive behaviour. The faradaic processes taking place below –0.5 V vs. Hg|HgO reference electrode are generation and adsorption of hydrogen. These processes do not perturb significantly the electrochemical and ion transport properties of the nanoporous carbon particles. It was found that hydrogen generation occurs at –0.5 V vs. Hg|HgO and that two hydrogen oxidation processes take place at positive potentials. The results indicate that the weakly adsorbed hydrogen undergoes oxidation between 0 and 0.1 V and that the strongly adsorbed hydrogen is oxidised at more positive potentials. The single particle technique was adapted for the determination of diffusion coefficients of an organic electrolyte. The different size of the anions and cations caused different transport characteristics at negative and positive potentials. Slow cycling was found important for ion penetration inside the nanopores and for the evaluation of the effective diffusion coefficients. The effective diffusion coefficients for the nanoporous carbon using aqueous 6M KOH and 0.1M TEABF4 in acetonitrile were estimated to 1.4 (±0.8).10-9 cm2 s-1 and 1.3 (±0.4) 10-8 cm2 s-1, respectively.
12

Plazmonicky aktivní elektrochemické elektrody na bázi nanotrubic sulfidu wolframičitého pokrytých zlatými nanočásticemi / Plasmonically active electrochemical electrodes based on tungsten disulfide nanotubes decorated with gold nanoparticles

Salajková, Zita January 2017 (has links)
When an electromagnetic wave illuminates metal nanostructure under right circumstances, it can couple to the motion of electrons and thus give rise to so-called LSPR. When these collective oscillations non-radiatively decay, they excite charge carriers that can have, for a short moment of time, highly non-thermal energy distribution. These so-called "hot" electrons and holes can then take part in photochemical applications, e.g. in reactions on photoactive electrodes where hot electrons act as catalysts. Gold nanoparticles seem to be a good candidate for fabrication of such electrodes because they exhibit resonantly enhanced absorption due to plasmon excitation in the visible and near infrared spectral range, which could make the solar energy harvesting more efficient. In this work we present electrohemical experiments that should help to clarify the underlying principles of photochemical reactions involving hot electrons. Our model system consists of indium tin oxide electrodes covered with tungsten disulphide nanotubes that were previously decorated by gold nanoparticles. By comparing the results of chronoamperometric measurements on individual components of this system it was shown that excitation of plasmonic nanoparticles indeed leads to photocurrents and that electrochemical methods can serve as a valuable tool for analysis of photochemical reactions catalyzed by hot electrons.
13

Élaboration par mécano-synthèse d'alliages à base Ti-Fe : caractérisation de leurs propriétés de stockage électrochimique d'hydrogène / Elaboration of Ti-Fe based alloys using ball milling : characterization of their electrochemical hydrogen storage properties

Hosni, Bilel 17 July 2018 (has links)
L’hydrogène est la solution potentielle pour réussir la transition énergétique d’un système actuel basé en grande partie sur les combustibles fossiles vers un système non émetteur de gaz toxiques et respectueux de l’environnement. Cependant, le stockage de l’hydrogène est un grand défi qui freine son application pratique dans les différents domaines. Les hydrures métalliques permettent de stocker une grande quantité d’hydrogène de façon réversible dans de bonnes conditions (Température, pression, sécurité…) comparée aux autres modes de stockage (gazeux et liquide). En plus, ces mêmes matériaux sont utilisés comme électrode négative dans les batteries Nickel-Métal Hydrure.Dans la première partie de cette thèse, les alliages Ti-Fe ont été synthétisés parmécanosynthèse pour différents temps de broyage et différents rapports massiquesbilles/poudre. Afin d’optimiser les paramètres d’élaboration, ces alliages ont été caractérisés par différentes techniques telles que la diffraction des rayons X, la microscopie électronique à balayage, la chronopotentiométrie, la chronoampérométrie et la voltamétrie cyclique.Dans une seconde partie, les alliages TiFe+4%MWNTs, TiFe0.95-xMx, TiFe0.90M0.10 etTiFe0.90Mn0.05V0.05 (x=0.05, 0.15) (M : Mn ou V) ont été élaborés selon les paramètres optimaux déterminés précédemment. L’influence de l’additif Nanotubes de Carbone à multiparois (MWNTs), de la substitution partielle du Fe par Mn et/ou V et de l’excès de Titane sur les propriétés structurales, morphologiques et électrochimiques telles que l’activation, la capacité de décharge électrochimique, la réversibilité, la tenue au cyclage, le coefficient de diffusion ont ensuite été étudiés. Les propriétés redox des électrodes, le potentiel de Nernst et la densité du courant d’échange, ont été déterminés, en se basant sur la première loi de Sternet le modèle théorique de Bulter -Volmer.Les résultats électrochimiques obtenus montrent que l’alliage TiFe+4 wt.% MWNTs présente les meilleures performances : une activation rapide (au 1er cycle) et une meilleure capacité maximale de décharge (266 mAh g-1) avec une réversibilité qui reste inchangée. / Hydrogen is the potential solution to make a success of the energy transition of a current system basically based on fossil fuels towards a system friendly to environment. However, the storage of hydrogen is a big challenge that hinders its practical application in different areas.. Metal hydrides can store a large amount of hydrogen reversibly under good conditions (temperature, pressure, safety ...) compared to other storage modes (gaseous and liquid). In addition, these same materials are used as negative electrode in Nickel-Metal Hydride batteriesIn the first part of this thesis, Ti-Fe alloys were synthesized using mechanical alloying (MA) under argon atmosphere at room temperature, with different ball to powder weight ratio and at different milling times. In order to determine the optimal parameters of the elaboration the metallic composite were investigated using different techniques such as X-ray diffraction, scanning electron microscopy (EDS support), chronopotentiometry, chronoamperometry and cyclic voltammetry,In the second part, the metallic compounds, TiFe+4%MWNTs, TiFe0.95-xMx, TiFe0.90M0.10 and TiFe0.90Mn0.05V0.05 (x=0.05, 0.15) (M : Mn or V), which are used as the negative electrode material for Ni-MH secondary batteries, were synthesized by mechanical alloying according to optimal parameters, previously determined.The effect of MWNT addition, the Mn and/or V partial substitution for Fe and the excess of titanium on the structural, morphological and electrochemical parameters such as activation, electrochemical discharge capacity, reversibility, cycle life time and hydrogen diffusion coefficient were investigated.The redox properties of the electrodes such as the Nernst potential and the exchange current density were studied based on Stern’s first law and the theoretical model of Bulter-Volmer.The electrochemical properties of studied samples show the best performance for TiFe+4% MWNTs alloy. Indeed, this alloy presents a rapid activation (1st cycle) and a best discharge capacity (266 mAhg-1) with a reversibility remaining unchanged
14

The design of ultrasensitive immunosensors based on a new multi-signal amplification gold nanoparticles-dotted 4-nitrophenylazo functionalised graphene sensing platform for the determination of deoxynivalenol

Sunday, Christopher Edozie January 2014 (has links)
Philosophiae Doctor - PhD / A highly dispersive gold nanoparticle-dotted 4-nitrophenylazo functionalised graphene nanocomposite (AuNp/G/PhNO2) was successfully synthesised and applied in enhancing sensing platform signals. Three label-free electrochemical immunosensors for the detection of deoxynivalenol mycotoxin (DON) based on the systematic modification of glassy carbon electrodes (GCE) with AuNp/G/PhNO2 was effectively achieved. General electrochemical impedance method was employed for the sensitive and selective detection of DON in standard solutions and reference material samples. A significant increase in charge transfer resistance (Rct) of the sensing interface was observed due to the formation of insulating immune-complexes by the binding of deoxynivalenol antibody (DONab) and deoxynivalenol antigen (DONag). Further attachments of DONab and DONag resulted in increases in the obtained Rct values, and the increases were linearly proportional to the concentration of DONag. The three immunosensors denoted as GCE/PDMA/AuNp/G/PhNH2/DONab, GCE/Nafion/[Ru(bpy)3]2+/AuNp/G/PhNH2/DONab and GCE/Nafion/[Ru(bpy)3]2+/G/PhNH2/DONab have detection range of 6 – 30 ng/mL for DONag in standard samples. Their sensitivity and detection limits were 43.45 ΩL/ng and 1.1 pg/L; 32.14ΩL/ng and 0.3 pg/L; 9.412 ΩL/ng and 1.1 pg/L respectively. This result was better than those reported in the literature and compares reasonably with Enzyme Linked Immunosorbent Assay (ELISA) results. The present sensing methodology represents an attractive alternative to the existing methods for the detection of deoxynivalenol mycotoxin and other big biomolecules of interest due to its simplicity, stability, sensitivity, reproducibility, selectivity, and inexpensive instrumentation. And they could be used to develop high-performance, ultra-sensitive electrochemiluminescence, voltammetric or amperometric sensors as well.
15

Calcium phosphate nucleation induced by electrochemical methods

Gohmann, Andrew Kaden 30 July 2021 (has links)
No description available.
16

Исследование каталитических свойств сложных оксидов PrBaCo2-xMxO6-d в электрохимическом окислении глюкозы : магистерская диссертация / Investigation of the catalytic properties of complex oxides PrBaCo2-xMxO6-d in the electrochemical oxidation of glucose

Разумова, М. В., Razumova, M. V. January 2018 (has links)
The analysis of literature data has shown that the methods used in laboratory diagnostics for determining the concentration of glucose and hydrogen peroxide have a number of disadvantages, for the elimination of which it is proposed to use electrochemical methods of determination. The electrochemical properties of complex oxides with a perovskite-like structure were studied using voltammetry and chronoamperometry. It has been established that all the complex oxides studied exhibit electrocatalytic activity with respect to glucose and hydrogen peroxide. It is shown that the scanning speed and the time of ultrasonic treatment of oxides have no significant effect on the process. Compounds that can be used as catalysts for creating sensors for determining glucose and hydrogen peroxide are proposed. / Анализ литературных данных показал, что применяемые в лабораторной диагностике методы для определения концентрации глюкозы и пероксида водорода имеют ряд недостатков, для устранения которых предлагается использовать электрохимические методы определения. Изучены электрохимические свойства сложных оксидов с перовскитоподобной структурой с применением вольтамперометрии и хроноамперометрии. Установлено, что все исследованные сложные оксиды проявляют электрокаталитическую активность по отношению к глюкозе и пероксиду водорода. Показано, что скорость сканирования и время ультразвуковой обработки оксидов не оказывает существенного влияния на процесс. Предложены соединения, которые могут быть использованы в качестве катализаторов для создания сенсоров для определения глюкозы и пероксида водорода.
17

Studying the altered reactivity of electrochemical systems in room temperature ionic liquids

Ernst, Sven January 2013 (has links)
The work presented in this thesis examines the electrochemical behaviour of a number of species, both surface-bound and in the solution phase, in various room-temperature ionic liquids (RTILs), in order to identify systems which show altered reactivities in room-temperature ionic liquids, compared to that in conventional, molecular, aprotic solvents. The fundamentals of electrochemistry are outlined and an introduction to room-temperature ionic liquids is given, after which the results of six original investigations are presented, as follows; The electrochemical response of surface-bound anthraquinonyl films was investigated as a function of RTIL cation size. The reduction of oxygen to superoxide in the [C<sub>2</sub>mim][NTf<sub>2</sub>] RTIL was studied at different carbon electrodes. The mechanisms of electrodeposition and stripping of Zn(II) onto bulk zinc deposits, on glassy carbon electrodes, in the [C<sub>4</sub>mPyrr][NTf<sub>2</sub>] RTIL were investigated. A novel and successful method for the fabrication of zinc microdisk electrodes was developed and the electrochemical behaviour of these electrodes was investigated. The mechanisms for the electrochemical reductions of some bromo- and nitrobenzenes at platinum microelectrodes were determined in the [C<sub>4</sub>mPyrr][NTf<sub>2</sub>] ionic liquid, in order to identify systems which displayed changed reactivities in RTILs compared to those in molecular aprotic solvents. The altered reactivity of 1-bromo-4-nitrobenzene in the [C<sub>4</sub>mPyrr][NTf<sub>2</sub>] ionic liquid was utilised via electrochemical reduction at zinc microelectrodes in order to form arylzinc compounds. The work presented in this thesis shows that the oft-taken view that the reactivity of a given species in an ionic liquid will mimic that in conventional aprotic solvents is not always the case. Reactivities can be markedly different between RTILs and aprotic solvents and can also be highly dependent on the specific ionic liquid employed.
18

Computational electrochemistry

Belding, Stephen Richard January 2012 (has links)
Electrochemistry is the science of electron transfer. The subject is of great importance and appeal because detailed information can be obtained using relatively simple experimental techniques. In general, the raw data is sufficiently complicated to preclude direct interpretation, yet is readily rationalised using numerical procedures. Computational analysis is therefore central to electrochemistry and is the main topic of this thesis. Chapters 1 and 2 provide an introductory account to electrochemistry and numerical analysis respectively. Chapter 1 explains the origin of the potential difference and describes its relevance to the thermodynamic and kinetic properties of a redox process. Voltammetry is introduced as an experimental means of studying electrode dynamics. Chapter 2 explains the numerical methods used in later chapters. Chapter 3 presents a review of the use of nanoparticles in electrochemistry. Chapter 4 presents the simulation of a random array of spherical nanoparticles. Conclusions obtained theoretically are experimentally confirmed using the Cr<sup>3+</sup>/Cr<sup>2+</sup> redox couple on a random array of silver nanoparticles. Chapter 5 presents an investigation into the concentration of supporting electrolyte required to make a voltammetric experiment quantitatively diffusional. This study looks at a wide range of experimental conditions. Chapter 6 presents an investigation into the deliberate addition of insufficient supporting electrolyte to an electrochemical experiment. It is shown that this technique can be used to fully study a stepwise two electron transfer. Conclusions obtained theoretically are experimentally confirmed using the reduction of anthracene in acetonitrile. Chapter 7 presents a new method for simulating voltammetry at disc shaped electrodes in the presence of insufficient supporting electrolyte. It is shown that, under certain conditions, the results obtained from this complicated simulation can be quantitatively obtained by means of a much simpler ‘hemispherical approximation’. Conclusions obtained theoretically are experimentally confirmed using the hexammineruthenium ([Ru(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup>/[Ru(NH<sub>3</sub>)<sub>6</sub>]<sup>2+</sup>) and hexachloroiridate ([IrCl<sub>6</sub>]<sup>2−</sup>/[IrCl<sub>6</sub>]<sup>3−</sup>) redox couples. Chapter 8 presents an investigation into the voltammetry of stepwise two electron processes using ionic liquids as solvents. It is shown that these solvents can be used to fully study a stepwise two electron transfer. Conclusions obtained theoretically are experimentally confirmed using the oxidation of N,N-dimethyl-p-phenylenediamine in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([C<sub>4</sub> mim][BF<sub>4</sub>]). The work presented in this thesis has been published as 7 scientific papers.
19

The use of cyclodextrin template-based metal oxide nanomaterials in the development of electrochemical sensors for phenolic endocrine disruptor compounds

Masikini, Milua January 2010 (has links)
<p>Iron oxide nanoparticles were prepared using co-precipitation method in the presence and absence of beta-cyclodextrin (&beta / -CD). Such materials were characterized using transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), attenuated total reflection Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). The TEM shows that the surface morphology has no difference between nanoparticles prepared in the presence and absence of beta-cyclodextrin (&beta / -CD), amorphous particles with high surface area and dimensions of about 100 nm by 500 nm. The amorphous states of nanoparticles are confirmed further by XRD. The ATR-FTIR analysis confirms inclusion complex between &beta / -CD and nanoparticles.</p>
20

The use of cyclodextrin template-based metal oxide nanomaterials in the development of electrochemical sensors for phenolic endocrine disruptor compounds

Masikini, Milua January 2010 (has links)
<p>Iron oxide nanoparticles were prepared using co-precipitation method in the presence and absence of beta-cyclodextrin (&beta / -CD). Such materials were characterized using transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), attenuated total reflection Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). The TEM shows that the surface morphology has no difference between nanoparticles prepared in the presence and absence of beta-cyclodextrin (&beta / -CD), amorphous particles with high surface area and dimensions of about 100 nm by 500 nm. The amorphous states of nanoparticles are confirmed further by XRD. The ATR-FTIR analysis confirms inclusion complex between &beta / -CD and nanoparticles.</p>

Page generated in 0.0486 seconds