• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 172
  • 47
  • 45
  • 19
  • 10
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 403
  • 106
  • 103
  • 91
  • 87
  • 62
  • 56
  • 53
  • 45
  • 45
  • 45
  • 44
  • 42
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A New Design of Multiple Classifier System and its Application to Classification of Time Series Data

Chen, Lei 22 September 2007 (has links)
To solve the challenging pattern classification problem, machine learning researchers have extensively studied Multiple Classifier Systems (MCSs). The motivations for combining classifiers are found in the literature from the statistical, computational and representational perspectives. Although the results of classifier combination does not always outperform the best individual classifier in the ensemble, empirical studies have demonstrated its superiority for various applications. A number of viable methods to design MCSs have been developed including bagging, adaboost, rotation forest, and random subspace. They have been successfully applied to solve various tasks. Currently, most of the research is being conducted on the behavior patterns of the base classifiers in the ensemble. However, a discussion from the learning point of view may provide insights into the robust design of MCSs. In this thesis, Generalized Exhaustive Search and Aggregation (GESA) method is developed for this objective. Robust performance is achieved using GESA by dynamically adjusting the trade-off between fitting the training data adequately and preventing the overfitting problem. Besides its learning algorithm, GESA is also distinguished from traditional designs by its architecture and level of decision-making. GESA generates a collection of ensembles and dynamically selects the most appropriate ensemble for decision-making at the local level. Although GESA provides a good improvement over traditional approaches, it is not very data-adaptive. A data- adaptive design of MCSs demands that the system can adaptively select representations and classifiers to generate effective decisions for aggregation. Another weakness of GESA is its high computation cost which prevents it from being scaled to large ensembles. Generalized Adaptive Ensemble Generation and Aggregation (GAEGA) is an extension of GESA to overcome these two difficulties. GAEGA employs a greedy algorithm to adaptively select the most effective representations and classifiers while excluding the noise ones as much as possible. Consequently, GAEGA can generate fewer ensembles and significantly reduce the computation cost. Bootstrapped Adaptive Ensemble Generation and Aggregation (BAEGA) is another extension of GESA, which is similar with GAEGA in the ensemble generation and decision aggregation. BAEGA adopts a different data manipulation strategy to improve the diversity of the generated ensembles and utilize the information in the data more effectively. As a specific application, the classification of time series data is chosen for the research reported in this thesis. This type of data contains dynamic information and proves to be more complex than others. Multiple Input Representation-Adaptive Ensemble Generation and Aggregation (MIR-AEGA) is derived from GAEGA for the classification of time series data. MIR-AEGA involves some novel representation methods that proved to be effective for time series data. All the proposed methods including GESA, GAEGA, MIR-AEGA, and BAEGA are tested on simulated and benchmark data sets from popular data repositories. The experimental results confirm that the newly developed methods are effective and efficient.
42

Cooperative Training in Multiple Classifier Systems

Dara, Rozita Alaleh January 2007 (has links)
Multiple classifier system has shown to be an effective technique for classification. The success of multiple classifiers does not entirely depend on the base classifiers and/or the aggregation technique. Other parameters, such as training data, feature attributes, and correlation among the base classifiers may also contribute to the success of multiple classifiers. In addition, interaction of these parameters with each other may have an impact on multiple classifiers performance. In the present study, we intended to examine some of these interactions and investigate further the effects of these interactions on the performance of classifier ensembles. The proposed research introduces a different direction in the field of multiple classifiers systems. We attempt to understand and compare ensemble methods from the cooperation perspective. In this thesis, we narrowed down our focus on cooperation at training level. We first developed measures to estimate the degree and type of cooperation among training data partitions. These evaluation measures enabled us to evaluate the diversity and correlation among a set of disjoint and overlapped partitions. With the aid of properly selected measures and training information, we proposed two new data partitioning approaches: Cluster, De-cluster, and Selection (CDS) and Cooperative Cluster, De-cluster, and Selection (CO-CDS). In the end, a comprehensive comparative study was conducted where we compared our proposed training approaches with several other approaches in terms of robustness of their usage, resultant classification accuracy and classification stability. Experimental assessment of CDS and CO-CDS training approaches validates their robustness as compared to other training approaches. In addition, this study suggests that: 1) cooperation is generally beneficial and 2) classifier ensembles that cooperate through sharing information have higher generalization ability compared to the ones that do not share training information.
43

A New Design of Multiple Classifier System and its Application to Classification of Time Series Data

Chen, Lei 22 September 2007 (has links)
To solve the challenging pattern classification problem, machine learning researchers have extensively studied Multiple Classifier Systems (MCSs). The motivations for combining classifiers are found in the literature from the statistical, computational and representational perspectives. Although the results of classifier combination does not always outperform the best individual classifier in the ensemble, empirical studies have demonstrated its superiority for various applications. A number of viable methods to design MCSs have been developed including bagging, adaboost, rotation forest, and random subspace. They have been successfully applied to solve various tasks. Currently, most of the research is being conducted on the behavior patterns of the base classifiers in the ensemble. However, a discussion from the learning point of view may provide insights into the robust design of MCSs. In this thesis, Generalized Exhaustive Search and Aggregation (GESA) method is developed for this objective. Robust performance is achieved using GESA by dynamically adjusting the trade-off between fitting the training data adequately and preventing the overfitting problem. Besides its learning algorithm, GESA is also distinguished from traditional designs by its architecture and level of decision-making. GESA generates a collection of ensembles and dynamically selects the most appropriate ensemble for decision-making at the local level. Although GESA provides a good improvement over traditional approaches, it is not very data-adaptive. A data- adaptive design of MCSs demands that the system can adaptively select representations and classifiers to generate effective decisions for aggregation. Another weakness of GESA is its high computation cost which prevents it from being scaled to large ensembles. Generalized Adaptive Ensemble Generation and Aggregation (GAEGA) is an extension of GESA to overcome these two difficulties. GAEGA employs a greedy algorithm to adaptively select the most effective representations and classifiers while excluding the noise ones as much as possible. Consequently, GAEGA can generate fewer ensembles and significantly reduce the computation cost. Bootstrapped Adaptive Ensemble Generation and Aggregation (BAEGA) is another extension of GESA, which is similar with GAEGA in the ensemble generation and decision aggregation. BAEGA adopts a different data manipulation strategy to improve the diversity of the generated ensembles and utilize the information in the data more effectively. As a specific application, the classification of time series data is chosen for the research reported in this thesis. This type of data contains dynamic information and proves to be more complex than others. Multiple Input Representation-Adaptive Ensemble Generation and Aggregation (MIR-AEGA) is derived from GAEGA for the classification of time series data. MIR-AEGA involves some novel representation methods that proved to be effective for time series data. All the proposed methods including GESA, GAEGA, MIR-AEGA, and BAEGA are tested on simulated and benchmark data sets from popular data repositories. The experimental results confirm that the newly developed methods are effective and efficient.
44

Semisupervised sentiment analysis of tweets based on noisy emoticon labels

Speriosu, Michael Adrian 02 February 2012 (has links)
There is high demand for computational tools that can automatically label tweets (Twitter messages) as having positive or negative sentiment, but great effort and expense would be required to build a large enough hand-labeled training corpus on which to apply standard machine learning techniques. Going beyond current keyword-based heuristic techniques, this paper uses emoticons (e.g. ':)' and ':(') to collect a large training set with noisy labels using little human intervention and trains a Maximum Entropy classifier on that training set. Results on two hand-labeled test corpora are compared to various baselines and a keyword-based heuristic approach, with the machine learned classifier significantly outperforming both. / text
45

Cooperative Training in Multiple Classifier Systems

Dara, Rozita Alaleh January 2007 (has links)
Multiple classifier system has shown to be an effective technique for classification. The success of multiple classifiers does not entirely depend on the base classifiers and/or the aggregation technique. Other parameters, such as training data, feature attributes, and correlation among the base classifiers may also contribute to the success of multiple classifiers. In addition, interaction of these parameters with each other may have an impact on multiple classifiers performance. In the present study, we intended to examine some of these interactions and investigate further the effects of these interactions on the performance of classifier ensembles. The proposed research introduces a different direction in the field of multiple classifiers systems. We attempt to understand and compare ensemble methods from the cooperation perspective. In this thesis, we narrowed down our focus on cooperation at training level. We first developed measures to estimate the degree and type of cooperation among training data partitions. These evaluation measures enabled us to evaluate the diversity and correlation among a set of disjoint and overlapped partitions. With the aid of properly selected measures and training information, we proposed two new data partitioning approaches: Cluster, De-cluster, and Selection (CDS) and Cooperative Cluster, De-cluster, and Selection (CO-CDS). In the end, a comprehensive comparative study was conducted where we compared our proposed training approaches with several other approaches in terms of robustness of their usage, resultant classification accuracy and classification stability. Experimental assessment of CDS and CO-CDS training approaches validates their robustness as compared to other training approaches. In addition, this study suggests that: 1) cooperation is generally beneficial and 2) classifier ensembles that cooperate through sharing information have higher generalization ability compared to the ones that do not share training information.
46

Analyse wissenschaftlicher Konferenz-Tweets mittels Codebook und der Software Tweet Classifier

Lemke, Steffen, Mazarakis, Athanasios 26 March 2018 (has links) (PDF)
Mit seiner fokussierten Funktionsweise hat der Mikrobloggingdienst Twitter im Laufe des vergangenen Jahrzehnts eine beachtliche Präsenz als Kommunikationsmedium in diversen Bereichen des Lebens erreicht. Eine besondere Weise, auf die sich die gestiegene Sichtbarkeit Twitters in der täglichen Kommunikation häufig manifestiert, ist die gezielte Verwendung von Hashtags. So nutzen Unternehmen Hashtags um die auf Twitter stattfindenden Diskussionen über ihre Produkte zu bündeln, während Organisatoren von Großveranstaltungen und Fernsehsendungen durch Bekanntgabe ihrer eigenen, offiziellen Hashtags Zuschauer dazu ermutigen, den Dienst parallel zum eigentlichen Event als Diskussionsplattform zu nutzen. [... aus der Einleitung]
47

Analysis of Classifier Weaknesses Based on Patterns and Corrective Methods

Skapura, Nicholas 18 May 2021 (has links)
No description available.
48

Klasifikátorová slovesa v českém znakovém jazyce / Classifier verbs in Czech sign language

Fritzová Kalousová, Josefina January 2021 (has links)
This thesis focuses on research of classifier verbs in Czech sign language. The aim of the thesis is to describe different types of classifier verbs in Czech sign language based on language material collected from deaf users of Czech sign language by means of the Verb of motion production. The thesis defines classifier verbs of motion, location, visual and geometric description, and handling and also describes various types of classifier handshapes that form them for a semantic perspective. Key words: verbs in Czech sign language, classifier, classifier verbs
49

Design of a Classifier for Bearing Health Prognostics using Time Series Data

Iyer, Balaji S. January 2018 (has links)
No description available.
50

Classifier System Learning of Good Database Schema

Tanaka, Mitsuru 07 August 2008 (has links)
This thesis presents an implementation of a learning classifier system which learns good database schema. The system is implemented in Java using the NetBeans development environment, which provides a good control for the GUI components. The system contains four components: a user interface, a rule and message system, an apportionment of credit system, and genetic algorithms. The input of the system is a set of simple database schemas and the objective for the classifier system is to keep the good database schemas which are represented by classifiers. The learning classifier system is given some basic knowledge about database concepts or rules. The result showed that the system could decrease the bad schemas and keep the good ones.

Page generated in 0.0368 seconds