• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 238
  • 122
  • 79
  • 41
  • 35
  • 22
  • 18
  • 14
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 662
  • 96
  • 80
  • 56
  • 53
  • 50
  • 43
  • 42
  • 40
  • 39
  • 38
  • 36
  • 35
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Carbon Dioxide Nucleation as a Novel Cleaning Method for Sodium Alginate Fouling Removal from Reverse Osmosis Membranes desalination

Alnajjar, Heba 05 1900 (has links)
The use of Reverse osmosis (RO) membranes have been significantly increasing in water desalination, and the main operational obstacle in RO desalination plants is membrane fouling. Among other solutes, dissolved biopolymers, such as polysaccharides can lead to severe membrane fouling especially with the addition of calcium ions because of the complexation formation between the surface of membrane and foulants materials. However, this complexation can also take place in the feed bulk, resulting in foulants aggregates formation. Although there are some physical techniques that can maintain the membrane performance without reducing its lifetime, only chemical cleanings are still commonly used in RO plants. In this study, a novel cleaning method is proposed to restore the membrane performance by removing the deposited foulants without reducing the membrane lifetime. The cleaning method is based on using water saturated with dissolved CO2 gas, and its principle is based on producing spontaneous CO2 bubbles due to local pressure difference leading to nucleation of bubbles throughout the membrane surface, especially at nucleation sites, which improve the cleaning efficiency. Alginic acid sodium salt was used as a model of polysaccharides foulants in presence of different concentrations of NaCl and calcium ions aiming to enhance membrane fouling, and then CO2 cleaning solution efficiency, in terms flux recovery (FR), was tested under different operating conditions and compared to other cleaning methods. Average FR of 20%±3, 25%±3 and 80%±3 for MilliQ water, a cleaning solution at pH4, and CO2 solution at 6 bar, 0.17 m/s, and 23 ̊C ±0.2 for 6 minutes were obtained, respectively. The efficiency of this novel cleaning method was also compared to direct osmosis overnight, and the average flux was comparable (about 60%±3), though that the cleaning time was significantly different. Various calcium concentrations (0-10 mM) were added in the alginate solution to study the fouling behavior in terms of the potential for bulk complexation to form cake alginate layer on the membrane surface rather than a gel layer, and the role of CO2 bubbles nucleation to remove foulants was investigated. This cleaning method can be considered as an alternative more environmentally friendly technique in RO application.
112

Methode zur Analyse von Reinigungsprozessen in nicht immergierten Systemen der Lebensmittelindustrie

Mauermann, Marc 22 May 2012 (has links)
Die Auslegung von automatischen Reinigungsprozessen in der Lebensmittelverarbeitung erfolgt überwiegend semi-empirisch und zur Gewährleistung der erforderlichen Produktsicherheit werden die Parameter Reinigungshäufigkeit, -dauer und Chemikalieneinsatz tendenziell zu hoch angesetzt. Das erweiterte Verständnis von Wirkzusammenhängen in industriellen Reinigungsprozessen würde die Auslegung verbessern und zu effizienteren Prozessen führen. Ziel der vorliegenden Arbeit ist es daher, mit einer neuartigen Untersuchungsmethode Voraussetzungen zur Analyse von Reinigungsprozessen in nicht immergierten Systemen zu erarbeiten. Im Mittelpunkt der Arbeit stehen Reinigungsprozesse, die durch den direkten Aufprall eines Flüssigkeitsstrahls auf einer ebenen Oberfläche gekennzeichnet sind. Im ersten Teil der Arbeit werden sowohl der Wissensstand als auch offene Fragenstellungen zu Wirkzusammenhängen von nicht immergierten Reinigungsvorgängen herausgearbeitet. Anschließend erfolgt eine Diskussion von in der Literatur beschriebenen industriellen sowie labortechnischen Methoden zur Untersuchung von Reinigungsprozessen in nicht immergierten Systemen. Auf den Rechercheergebnissen aufbauend, wurde eine Untersuchungsmethode auf Basis der optischen Erfassung von Fluoreszenzemissionen erarbeitet, die eine direkte, orts- und zeitaufgelöste Analyse des Reinigungsverlaufs ermöglicht. Zur Überprüfung der Validität des methodischen Ansatzes wurden schwerpunktmäßig kausale Zusammenhänge zwischen Betriebsparametern des Reinigungssystems und der Reinigbarkeit genutzt.
113

Evaluation of Different Forward Osmosis Membrane Cleaning Strategies for Produced Water Streams Treatment

Alamoudi, Talal 07 1900 (has links)
Forward osmosis (FO) as a novel membrane separation technology has recently been investigated in various water treatment applications. The natural mass transfer process between two solutions driven by the osmotic pressure difference leads to many operational advantages in the FO process, such as low energy consumption and minimal fouling problems. It makes FO a feasible technology for the treatment of produced water (PW). Although previously, the treatment of PW using FO has been investigated, osmotic backwashing (OB) is not systematically examined for water flux recovery of the PW fouled FO membranes. Moreover, the cleaning of FO membranes used for the simultaneous treatment of different PW streams was never previously attempted. In this study, OB was thoroughly investigated for the cleaning of PW-fouled FO membranes. Also, FO membrane chemical cleaning using SDS and NaOH solutions was examined too. To investigate OB, the cleaning efficiency of a 60 min OB cleaning protocol was examined under different FO operating modes in (5 x 20 h) experiments using synthetic desalter effluent as FO feed solution (FS) and 1.2 M NaCl solution or water-oil separator outlet (WO) as draw solutions (DS). The AL-FS (active layer facing FS) mode outcompeted the AL-DS (active layer facing DS) mode, achieving a flux of 12.9 LMH and 80.1% water reclamation when using WO as a DS. Therefore, this FO configuration 5 was selected when evaluating the cleaning protocols. Moreover, after evaluating different OB methods, the 30 min OB protocol achieved the highest system efficiency rate of 95% and was studied for the treatment of real PW streams. The SDS and NaOH chemical cleaning methods achieved flux recovery rates of 99% and 98% by the end of the third treatment cycle, respectively, outperforming the 89% flux recovery rate of the optimized OB protocol. Although the investigated cleaning methods were able to restore the system performance, a substantial increase in RSF was observed due to mainly irreversible colloidal fouling. This study demonstrates the feasibility of OB and chemical cleaning in restoring FO system performance for the simultaneous treatment of PW streams
114

L'essai d'un nettoyeur de drains hydraulique

Laperrière, Lucie January 1988 (has links)
No description available.
115

Novel Online Data Cleaning Protocols for Data Streams in Trajectory, Wireless Sensor Networks

Pumpichet, Sitthapon 12 November 2013 (has links)
The promise of Wireless Sensor Networks (WSNs) is the autonomous collaboration of a collection of sensors to accomplish some specific goals which a single sensor cannot offer. Basically, sensor networking serves a range of applications by providing the raw data as fundamentals for further analyses and actions. The imprecision of the collected data could tremendously mislead the decision-making process of sensor-based applications, resulting in an ineffectiveness or failure of the application objectives. Due to inherent WSN characteristics normally spoiling the raw sensor readings, many research efforts attempt to improve the accuracy of the corrupted or “dirty” sensor data. The dirty data need to be cleaned or corrected. However, the developed data cleaning solutions restrict themselves to the scope of static WSNs where deployed sensors would rarely move during the operation. Nowadays, many emerging applications relying on WSNs need the sensor mobility to enhance the application efficiency and usage flexibility. The location of deployed sensors needs to be dynamic. Also, each sensor would independently function and contribute its resources. Sensors equipped with vehicles for monitoring the traffic condition could be depicted as one of the prospective examples. The sensor mobility causes a transient in network topology and correlation among sensor streams. Based on static relationships among sensors, the existing methods for cleaning sensor data in static WSNs are invalid in such mobile scenarios. Therefore, a solution of data cleaning that considers the sensor movements is actively needed. This dissertation aims to improve the quality of sensor data by considering the consequences of various trajectory relationships of autonomous mobile sensors in the system. First of all, we address the dynamic network topology due to sensor mobility. The concept of virtual sensor is presented and used for spatio-temporal selection of neighboring sensors to help in cleaning sensor data streams. This method is one of the first methods to clean data in mobile sensor environments. We also study the mobility pattern of moving sensors relative to boundaries of sub-areas of interest. We developed a belief-based analysis to determine the reliable sets of neighboring sensors to improve the cleaning performance, especially when node density is relatively low. Finally, we design a novel sketch-based technique to clean data from internal sensors where spatio-temporal relationships among sensors cannot lead to the data correlations among sensor streams.
116

Determination of Design Parameters and Investigation on Operation Performance for an Integrated Gas Cleaning System to Remove Tars from Biomass Gasification Producer Gas.

Mwandila, Gershom January 2010 (has links)
Determinations of design parameters and investigation on operation performance of a tar removal system for gas cleaning of biomass producer gas have been undertaken. The presence of the tars in the producer gas has been the major hindrance for the commercialisation of the biomass gasification technology for power generation, hydrogen production, Fischer Tropsch (FT) synthesis, chemical synthesis and synthetic natural gas (SNG) synthesis. The characteristic of the tars to condense at reduced temperatures cause problems in the downstream processing as the tars can block and foul the downstream process equipment such as gas engines reactor channels, fuel cells, etc. Considerable efforts have been directed at the removal of tars from the producer gas where the tars can be either chemically converted into lighter molecular weight molecules or physically transferred from gas phase to liquid or solid phase. In the former, the tars have been removed in a scrubber by transferring them from the producer gas to a scrubbing liquid and then removed from the liquid to air in a stripper and finally recycled them into air to a gasifier to recover their energy. A tar removal test system involving a scrubber and stripper has been designed based on the predicted tar solubility in canola methyl ester (CME) as the scrubbing liquid and its measured properties (CME is a type of methyl ester biodiesel). The tar solubility has been predicted to decrease with increasing temperatures and thus its value increases at lower temperatures. In designing the test system, the design parameters are needed including equilibrium coefficients of the gas-liquid system, molar transfer coefficient and the optimum liquid to gas flow rate ratio. The equilibrium coefficients have been predicted based on thermodynamic theories where the required data are determined from CME composition and known properties of each component of the CME as well as the properties of the model tar (naphthalene). The molar transfer coefficients are then experimentally determined and the correlations as a function of liquid and gas flow rates are proposed which are consistent with literature. The optimum liquid to gas flow rate ratios have been found to be 21.4±0.1 for the scrubber and 5.7±0.1 for the stripper. Using these optimum ratios, the tar removal efficiencies in the scrubber and the stripper are 77 and 74%, respectively. The analysis of the system performance has been achieved after an innovative method of determining tar concentrations in both the liquid and gas phase had been developed based on the concept of the density of liquid mixtures. However, these tar removal efficiencies are low due to the fact that the targeted tar concentration in the scrubber’s off-gas was large. As a result the system has been redesigned based on the determined design parameters and its operation performance retested. In the redesigned system, the tar removal efficiency in the scrubber and stripper is 99%. The redesigned system would be integrated with the UC gasifier for downstream gas cleaning. Since 1% of tars are not removed, a makeup tar free CME of 0.0375 litres per hour for the 100kW UC gasifier has been introduced in the recycle stream between the scrubber and stripper to avoid tar accumulation in the system.
117

Infrared Reflection-Absorption Spectrometry and Chemometrics for Quantitative Analysis of Trace Pharmaceuticals on Surfaces

Perston, Benjamin Blair January 2006 (has links)
Cleaning validation, in which cleaned surfaces are analysed for residual material, is an important process in pharmaceutical manufacturing and research facilities. Current procedures usually consist of either swab or rinse-water sampling followed by analysis of the samples. The analysis step is typically either rapid but unselective (conductivity, pH, total organic carbon, etc.), or selective but time-consuming (HPLC). This thesis describes the development of an in situ surface-spectroscopic analysis that removes the need for swab sampling and is both rapid and selective. This method has the potential to complement existing analyses to increase the efficiency of cleaning-validation protocols. The spectrometric system consists of a Fourier-transform infrared (FTIR) spectrometer coupled to a fibre-optic grazing-angle reflectance probe, and allows the measurement of infrared reflection-absorbance spectra (IRRAS) from flat surfaces in ~10 s. Multivariate chemometric methods, such as partial least squares (PLS) regression, are used to exploit the high information content of infrared spectra to obtain selective analyses without physical separation of the analyte or analytes from whatever interfering species may be present. Multivariate chemometric models require considerably more effort for calibration and validation than do traditional univariate techniques. This thesis details suitable methods for preparing calibration standards by aerosol deposition, optimising and validating the model by cross- and test-set validation, and estimating the uncertainty by resampling and formula-based approaches. Successful calibration models were demonstrated for residues of acetaminophen, a model active pharmaceutical ingredient (API), on glass surfaces. The root-mean-square error of prediction (RMSEP) was ~0.07 µg cm⁻². Simultaneous calibration for acetaminophen and aspirin, another API, gave a similar RMSEP of 0.06 µg cm⁻² for both compounds, demonstrating the selectivity of the method. These values correspond to detection limits of ~0.2 µg cm⁻², well below the accepted visual detection limit of ~1-4 µg cm⁻². The sensitivity of the method with a stainless steel substrate was found to depend strongly on the surface finish, with highly polished surfaces giving more intense IRRAS. RMSEP values of 0.04- 0.05 µg cm⁻² were obtained for acetaminophen on stainless steel with three different finishes. For this system, severe nonlinearity was encountered for loadings 1.0 µg cm⁻². From the results presented in this thesis, it is clear that IRRAS has potential utility in cleaning validation as a complement to traditional techniques.
118

Cleaning Away the Bad Stuff : A Comparative Analysis of the Use of Cleaning for Getting Rid of Monstrosity in Dead Until Dark and Shakespeare's Landlord

Lindmark, Jenny January 2017 (has links)
Abstract   This essay is analysing the presence of cleaning and grooming in the novels Shakespeare’s Landlord and Dead Until Dark, both by Charlaine Harris. Against the backdrop of teratology, the essay demonstrates how cleaning and grooming are means for the female protagonists Lily and Sookie to get rid of their inner and outer monstrosities. Their respective monstrosity is defined against the definition of monstrosity by David J. Skal in Monster Theory Seven Theses and the need to get rid of monstrosity is discussed against the theories of Julia Kristeva and Mary Douglas.
119

Reaction of aqueous ammonium sulfide on SiGe 25%

Heslop, Stacy L., Peckler, Lauren, Muscat, Anthony J. 05 1900 (has links)
SiGe 25% substrates were treated with aqueous solutions of ammonium sulfide with and without added acid to understand the adsorption of sulfur on the surface. X-ray photoelectron spectroscopy showed no sulfide layer was deposited from aqueous (NH4)(2)S alone and instead both Si and Ge oxides formed during immersion in the sulfur solution. The addition of hydrofluoric and hydrochloric acids dropped the pH from 10 to 8 and deposited sulfides, yet increased the oxide coverage on the surface and preferentially formed Ge oxides. The sulfur coverage grew with increasing concentrations of acid in the aqueous (NH4)(2)S. The simultaneous deposition of O and S is suspected to be the result of oxidized sulfur species in solution. Metal-insulator-semiconductor capacitor (MISCAP) devices were fabricated to test the electrical consequences of aqueous ammonium sulfide wet chemistries on SiGe. MISCAPs treated with acidic ammonium sulfide solutions contained fewer interface defects in the valence band region. The defect density (D-it) was on the order of 10(+12) cm(-2) eV(-1). The flat band voltage shift was lower after the acidic ammonium sulfide treatment, despite the presence of surface oxides. Adsorption of S and potentially O improved the stability of the surface and made it less electrically active. (C) 2017 American Vacuum Society.
120

Validace čisticích procesů 1. / Cleaning processes validation 1.

Hynková, Aneta January 2013 (has links)
The theoretical part deals with the problems of cleaning validation as one of the basic principles of quality assurance, which should secure the production of safe, effective and quality medicines. Validation of cleaning processes is required by good manufacturing practice, particularly to prevent contamination of raw materials, intermediate products, products and other materials. This work deals with the legislative control of validation, its organization and formalities. It also deals with the issue cleanliness in manufacturing facilities and its evaluation. The experimental part was carried out in a pharmaceutical company Teva Czech Industries s.r.o in Opava. Analytical method for flutamide was developed and validated. The analytical method will be used to cleaning validation of the device in which it will be produced in the future. Validation of the analytical method included verification of validation characteristics such as accuracy, precision, specificity, linearity, detection and the limit of quantification and stability. Keywords: pharmaceutical manufacturing, validation, cleaning

Page generated in 0.0213 seconds