11 |
CMOS-MEMS for RF and Physical Sensing ApplicationsUdit Rawat (13834036) 22 September 2022 (has links)
<p>With the emergence of 5G/mm-Wave communication, there is a growing need for novel front-end electromechanical devices in filtering and carrier generation applications. CMOS-MEMS resonators fabricated using state-of-the-art Integrated Circuit (IC) manufacturing processes provide a significant advantage for power, area and cost savings. In this work, a comprehensive physics-based compact model capable of capturing the non-linear behaviour and other non-idealities has been developed for MEMS resonators seamlessly integrated in CMOS. As the first large signal model for CMOS-embedded resonators, it enables holistic design of MEMS components with advanced CMOS circuits as well as system-level performance evaluation within the framework of modern IC design tools. Global Foundries 14nm FinFET (GF14LPP) Resonant Body Transistors (fRBT) operating at 11.8 GHz are demonstrated and benchmarked against this large-signal electromechanical model. </p>
<p><br></p>
<p>Additionally, there is a growing interest in CMOS-integrable ferroelectric materials such as Hafnium Dioxide (HfO2) and Aluminum Scandium Nitride (AlScN) for next-generation memory and computation, as well as electromechanical transduction in CMOS-MEMS devices. This work also explores the performance of 700 MHz Ferroelectric Capacitor-based resonators in the Texas Instruments HPE035 process under high-power operating conditions. Identification of previously unreported characteristics, together with the first nonlinear large signal model for integrated ferroelectric resonators, provides insights on the design of frequency references and acoustic filters using ferroelectric transducers. </p>
<p><br></p>
<p>Extending the range of unreleased CMOS-MEMS resonators to lower frequency using novel design, we also investigate embedded transducers in chip-scale devices for physical sensing. We have simulated and modeled the transducer coupling for low-frequency propagating modes and benchmarked their projected performance against state-of-the-art conventional MEMS sensors. A new approach to phononic crystal (PnC) Interdigitated Transducers (IDTs) is presented emulating the acoustic dispersion in conventional ICs. Unloaded quality factors up to 15,000 have been measured in $\sim$80 MHz resonators, demonstrating their capacity for resonant rotation sensing. We present a unique methodology to amplify and collimate acoustic waves using CMOS-design-rule-compliant Graded Index (GRIN) Phononic IDTs. Ultimately, the CMOS-MEMS techniques presented in this work for both RF applications and physical sensing can facilitate additional functionality in standard CMOS and emerging 3D heterogeneously integrated (3DHI) ICs with minor or no modifications to manufacturing and packaging. This enables new paradigms in next-generation communications, internet of things (IoT), and hardware security.</p>
|
12 |
La technologie CMOS-MEMS pour des applications acoustiquesEsteves, J. 24 October 2013 (has links) (PDF)
Récemment, des travaux montrant la faisabilité des MEMS à base de la technologie CMOS complétée par un micro-usinage en surface sans masque ont été publiés. A la différence de l'approche plus ancienne où la libération des composants MEMS a été faite par une gravure du silicium, la technologie proposée consiste en la gravure des couches d'oxyde afin de libérer les couches métalliques issues de la technologie CMOS. Ce sujet de thèse propose donc de fabriquer des microsystèmes à vocation acoustique à partir d'une technologie CMOS standard : AMS 0.35 μm. Il sera, pour cela, composé de deux parties. Dans la première partie, il s'agit de développer un procédé technologique (déterminer le type de gravure, les temps de gravure, ainsi que les dimensions extrêmes réalisables pour les structures simples en technologie CMOS). En effet, après avoir étudié les différentes possibilités de la technologie CMOS-MEMS proposées dans la littérature, un procédé CMOSMEMS a été mis au point. Ce procédé consiste à graver une couche sacrificielle d'oxyde afin de libérer des microstructures constituées des couches métalliques issues de la technologie CMOS 0.35 μm d'AMS. Le procédé est premièrement testé sur des échantillons contenant des microstructures telles que des ponts et des poutres. La seconde partie du travail est consacrée à la validation du procédé CMOS-MEMS par un développement de structures MEMS acoustiques représentées par un microphone MEMS capacitif. Dans un premier temps, un microphone MEMS capacitif a été réalisé à partir de la technologie CMOS 0.35 μm d'AMS. Après avoir pris connaissance des différents aspects de la technologie CMOS 0.35 μm d'AMS (matériaux, dimensions, règles de dessin,...), une modélisation de microphone MEMS capacitifs est proposée grâce à la réalisation d'un schéma électrique équivalent basé sur les analogies entre les domaines électrique, mécanique et acoustique. Chaque paramètre de ce circuit est déterminé par l'intermédiaire de relations connues et par des logiciels de simulation utilisant la méthode des éléments finis (ANSYS, CoventorWare). Une fois les performances des microphones estimés à partir de ce circuit équivalent, un layout, représentant les différents microphones conçus, a été créé sous Cadence afin d'être envoyé au fondeur AMS. Dès la réception des échantillons, le procédé CMOSMEMS mise en oeuvre précédemment a été appliqué afin de libérer les structures des différents dispositifs. Ensuite, une série de caractérisations a pu être réalisée sur les premiers échantillons. Ces caractérisations visent à déterminer les performances des différents dispositifs fabriqués, mais aussi à estimer les propriétés mécaniques des différentes couches utilisées pour former la structure des microphones. De cette façon, le circuit équivalent pourra être validé ou être amélioré selon les résultats obtenus.
|
Page generated in 0.0192 seconds