• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 11
  • 11
  • 11
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Improved Out-of-band 90° Branch-line Coupler with Application to Butler Beamforming Network

Akash Bhargava (15388997) 02 May 2023 (has links)
<p>  </p> <p>This thesis introduces a 2.4 GHz hybrid 3-dB coupler with improved out-of-band rejection by incorporating a setup of transverse transmission lines, extensions, and open-circuit stubs at each of the coupler branches. To achieve matching at the design frequency, the <em>ABCD</em> matrix of the above-mentioned setup is calculated and associated to that of a 90° transmission line, leading to exact analytical equations for the impedances and electrical lengths. Simulated coupler design shows a return loss and isolation better than –27 dB as well as an in-band and out-of-band transmission losses better than –4 dB and –25 dB, respectively.</p> <p>The resulting design is applied to a 4×4 Butler matrix, which consists of other components; namely, crossovers, phase shifters and phase matchers. After designing and validating each of these components, they are integrated in the Butler matrix. To validate the radiation (i.e., beamforming) patterns, a microstrip patch antenna array is also designed and verified. The overall network (i.e., Butler matrix, antenna array) is simulated and parameters including phase-differences and 2D and 3D radiation patterns are validated. These electrical parameters are also measured for the fabricated Butler matrix. Based on the 2D and 3D radiation patterns, beamforming is obtained at ±10° and ±30°.</p> <p>Beamforming has applications in many different areas. Some applications like tracking and localization, satellite communication, high power beam-steering, and harmonic radar are also referenced in this thesis.</p>
2

CMOS-MEMS for RF and Physical Sensing Applications

Udit Rawat (13834036) 22 September 2022 (has links)
<p>With the emergence of 5G/mm-Wave communication, there is a growing need for novel front-end electromechanical devices in filtering and carrier generation applications. CMOS-MEMS resonators fabricated using state-of-the-art Integrated Circuit (IC) manufacturing processes provide a significant advantage for power, area and cost savings. In this work, a comprehensive physics-based compact model capable of capturing the non-linear behaviour and other non-idealities has been developed for MEMS resonators seamlessly integrated in CMOS. As the first large signal model for CMOS-embedded resonators, it enables holistic design of MEMS components with advanced CMOS circuits as well as system-level performance evaluation within the framework of modern IC design tools. Global Foundries 14nm FinFET (GF14LPP) Resonant Body Transistors (fRBT) operating at 11.8 GHz are demonstrated and benchmarked against this large-signal electromechanical model. </p> <p><br></p> <p>Additionally, there is a growing interest in CMOS-integrable ferroelectric materials such as Hafnium Dioxide (HfO2) and Aluminum Scandium Nitride (AlScN) for next-generation memory and computation, as well as electromechanical transduction in CMOS-MEMS devices. This work also explores the performance of 700 MHz Ferroelectric Capacitor-based resonators in the Texas Instruments HPE035 process under high-power operating conditions. Identification of previously unreported characteristics, together with the first nonlinear large signal model for integrated ferroelectric resonators, provides insights on the design of frequency references and acoustic filters using ferroelectric transducers. </p> <p><br></p> <p>Extending the range of unreleased CMOS-MEMS resonators to lower frequency using novel design, we also investigate embedded transducers in chip-scale devices for physical sensing. We have simulated and modeled the transducer coupling for low-frequency propagating modes and benchmarked their projected performance against state-of-the-art conventional MEMS sensors. A new approach to phononic crystal (PnC) Interdigitated Transducers (IDTs) is presented emulating the acoustic dispersion in conventional ICs. Unloaded quality factors up to 15,000 have been measured in $\sim$80 MHz resonators, demonstrating their capacity for resonant rotation sensing. We present a unique methodology to amplify and collimate acoustic waves using CMOS-design-rule-compliant Graded Index (GRIN) Phononic IDTs. Ultimately, the CMOS-MEMS techniques presented in this work for both RF applications and physical sensing can facilitate additional functionality in standard CMOS and emerging 3D heterogeneously integrated (3DHI) ICs with minor or no modifications to manufacturing and packaging. This enables new paradigms in next-generation communications, internet of things (IoT), and hardware security.</p>
3

Solid-State Plasma Switches for Reconfigurable High-Power RF Electronics

Alden Fisher (18429603) 24 April 2024 (has links)
<p dir="ltr"> Conventional RF switching technologies struggle to simultaneously achieve high-power handling, low loss, high isolation, broadband operation, quick reconfiguration, high linearity, and low cost, which are desirable for many applications, including communications, radar, and sensors. Moreover, they require electrical bias networks, which degrade performance and, in many cases, inhibit wideband applications, including DC operation. On the other hand, plasma (photoconductive) switches use an optical bias to generate free charge carriers. Recently these switches have begun to not only rival conventional technologies in terms of performance metrics such as switching speeds and loss but have exceeded what is possible in terms of power handling. This work details the strides made in placing solid-state plasma technologies at the forefront of advanced, high-power switching applications including a novel high-power tuner and an absorptive/reflective SPnT switch. In various form factors, SSP has achieved analog control of loss as low as 0.09 dB and isolation as high as 54 dB, linearity of 68.8 dBm (IP3), 110 GHz instantaneous bandwidth, including DC, switching speeds as low as 3.5 us, 100+ W power handling, and 30+ W hot switching. In addition, comprehensive physics modeling has been developed to enable seamless design validation before fabrication commences. This thesis discusses the achievements and design considerations for creating optimized plasma switches and proposes a path for future applications.</p>
4

Doherty-Outphasing Power Amplifier Continuum Theory

Liang, Chenyu January 2020 (has links)
No description available.
5

The 2009 Electronics and Telecommunications Research Seminar Series: 8th Workshop Proceedings.

Sheriff, Ray E. 04 January 2009 (has links)
Yes / This is the eighth workshop to be organised under the postgraduate programmes in electrical and electronic engineering (EEE). The workshop concludes the Research Seminar Series, which has provided a platform for disseminating the latest research activities in related technologies through its weekly seminars. The EEE courses cover a broad range of technologies and this is reflected in the variety of topics presented during the workshop. In total, thirty-three papers have been selected for the proceedings, which have been divided into seven sections. The workshop aims to be as close to a `real¿ event as possible. Hence, authors have responded to a Call for Papers with an abstract, prior to the submission of the final paper. This has been a novel experience for many, if not all of the contributors. Clearly, authors have taken up the challenge with enthusiasm, resulting in what promises to be an interesting and informative workshop.
6

The 2010 Electronics and Telecommunications Research Seminar Series: 9th Workshop Proceedings

Sheriff, Ray E. 2010 April 1914 (has links)
yes / This is the ninth workshop to be organised under the postgraduate programmes in electrical and electronic engineering (EEE). The workshop concludes the Research Seminar Series, which has provided a platform for disseminating the latest research activities in related technologies through its weekly seminars. The EEE courses cover a broad range of technologies and this is reflected in the variety of topics presented during the workshop. In total, forty-four papers have been selected for the proceedings, which have been divided into eight sections. The workshop aims to be as close to a `real¿ event as possible. Hence, authors have responded to a Call for Papers with an abstract, prior to the submission of the final paper. This has been a novel experience for many, if not all of the contributors. As usual, authors have taken up the challenge with enthusiasm, resulting in a collection of papers that reflects today¿s research challenges. / School of Engineering, Design and Technology
7

Angle of Arrival Estimation Using Spectral Interferometry and a Photonic Link

Andrew J Putlock (18436287) 29 April 2024 (has links)
<p dir="ltr">Accurately locating a radio-frequency (RF) emitter is imperative in the defense sector, and passive direction finding systems are intriguing due to relatively low cost. This approach involves using the time difference between a signal’s impact at equispaced antennas to determine the location of the emitter, a particular challenge for wideband waveforms operating near the noise floor. Microwave photonic systems have been demonstrated for passive direction finding. These techniques possessed drawbacks, such as reliance on the incoming signal’s bandwidth, dependence on laser power, or the inability to recover an angle from wideband pulses. This thesis presents a novel approach to passive direction finding by translating the methods of spectral interferometry from the optical domain to RF. Spectral interferometry involves interfering a time-delayed reference pulse with a “signal” pulse that has passed through an unknown system. By removing the spectral phase of the reference pulse from the resulting interferogram, the spectral phase of the uncharacterized system is recovered. This enables direction-finding for many waveforms, including the wideband low peak power chirps frequently used in radar. Incorporating an analog optical delay line into both a hard-wired RF interferometer and a two-element antenna array demonstrated spectral interferometric processing of chirped signals with up to 1 GHz instantaneous bandwidth. The technique extracted accurate delays and angles to within 2$\degree$ throughout testing. This approach only requires the imposed delay be longer than the autocorrelation of the bandwidth limited pulses. With additional backend processing, this method could simultaneously determine the angle and classify the incoming signal.</p>
8

SCALABLE LASER ASSISTED MANUFACTURING TECHNIQUES FOR LOW-COST MULTI-FUNCTIONAL PASSIVE WIRELESS CHIPLESS SENSORS.pdf

Sarath Gopalakrishnan (15300904) 13 June 2023 (has links)
<p>Passive chipless wireless sensors have gained great attention in Radio Frequency Identification (RFID) applications, inventory tracking, and structural health monitoring, as they offer a prospective low-cost, scalable alternative to the state-of-the-art active sensors. While the popularity and demand for chipless sensors are on the rise, their applications are limited to low-noise environments and their caliber as low-cost, scalable devices has not been explored to a successful degree in challenging domains, such as precision agriculture, healthcare, and food packaging. Size, cost of materials, and complexity of the manufacturing process are the main obstacles to progress in the large-scale production of chipless sensors for practical applications. </p> <p><br></p> <p>Conventional manufacturing processes, such as photolithography, are costly, cumbersome, and time intensive. While additive manufacturing techniques, such as printing technologies, have circumvented some of these challenges, printing techniques require costly inks and complex post-processing steps, such as drying and sintering, which limit their large-scale utilization. To overcome these challenges, this dissertation focuses on investigating the possibility of utilizing laser processing of conventional metalized films and polymers to develop cost-effective chipless sensors. This Scalable Laser Assisted Manufacturing (SLAM) process offers a platform for large-scale roll-to-roll production of high-resolution sensors for precision agriculture, healthcare, and food packaging applications. </p> <p><br></p> <p>In this pursuit, the first study explores combining the SLAM process with 3D printing to develop a miniaturized, biodegradable, chipless sensor for soil moisture monitoring. In the second study, the SLAM process is further explored in the development of metalized stickers for healthcare applications focusing on urine bag management and early risk detection of urinary tract infections. In the third study, the capability of the SLAM process to form moisture-sensitive metal nanoparticles as a co-product of metal patterning is harnessed to develop a chipless humidity sensor. The SLAM process is further expanded in the fourth study by functionalizing metalized films with stimuli-responsive polymers to achieve specificity in detecting unique biomarkers of food spoilage. The SLAM platform described in this work opens up new avenues toward processing metalized fabric for the future of wearable electronics and implementing multi-functional sensors for precision agriculture.</p> <p>  </p>
9

Effect of the voltage dependency of the device-level gate-source capacitance in the linearity of a common-gate amplifier

Eduardo A. Garcia (5929682) 19 July 2022 (has links)
<p>Most work on amplifier linearity has focused on the transconductance (gm) linearity, but there is increasing evidence that the voltage-dependence of the gate-source capacitance (Cgs) plays an important role in the linearity of emerging devices. This work addresses the capacitance contribution by incorporating the nonlinearities attributed to the voltage dependency of Cgs of a general FET on a circuit-level Cg amplifier model.</p> <p>An amplifier model including a voltage-dependent Cgs, and a voltage-dependent gm is studied using harmonic analysis and Volterra series. A closed form expression for the  third-order intercept point (IP3) of the amplifier, which depends on the nonlinear coefficients of Cgs, is obtained. A simple design rule, and a formula for the reduction of the IP3 due to the voltage-dependent Cgs are also presented. </p> <p>As application examples, the linearity of an amplifier based on a specific device is analyzed for two cases by extracting the nonlinear circuit parameters of the device. First for an analytic model of a bulk mosfet. Second for a one-dimensional, ballistic, coaxially gated Si nanowire. For low frequencies of design, the distortion introduced by gm is predominant, but for high frequencies it is obscured by the distortion coming from Cgs.</p> <p>We conclude that taking into account the voltage-dependence of Cgs is crucial when predicting the linearity behavior of a Cg amplifier, either designed for high-frequency operation, or based on a device operating near the quantum capacitance limit. </p>
10

MODELING AND CHARACTERIZATION OF SOLID-STATE AND VACUUM HIGH-POWER MICROWAVE DEVICES

Xiaojun Zhu (8039564) 30 November 2023 (has links)
<p dir="ltr">High-power microwave (HPM) devices are generally vacuum-based devices that transform electron beam energy into microwaves with peak powers above 100 MW from 1-300 GHz. Solid-state HPM devices provide more compactness and greater reliability while consuming less power. Nonlinear transmission lines (NLTLs) provide a solid-state alternative to HPM generation by sharpening the input pulses from a pulse forming network to create output oscillations.</p><p dir="ltr">The first section of this dissertation evaluates and explores the feasibility of using nonlinear composites containing ferroelectric (e.g., Ba<sub>2/3</sub>Sr<sub>1/3</sub>TiO<sub>3</sub>, BST) and/or ferromagnetic (e.g., Ni<sub>1/2</sub>Zn<sub>1/2 </sub>Fe<sub>2</sub>O<sub>4</sub>, NZF) inclusions in a linear polymer host (polydimethylsiloxane, PDMS) to tune NLTL properties for HPM applications. Appropriately modelling and designing NLTLs using nonlinear composites require accurately characterizing their linear and nonlinear electromagnetic properties. We first studied the electromagnetic properties of the composites using theoretical, numerical, and experimental approaches. Incorporating these composite models and characterizations into NLTL simulations will be discussed.</p><p dir="ltr">Vacuum-based HPM devices, such as magnetrons and crossed-field amplifiers, generally operate in the space-charge-limited region, which corresponds to the maximum current possible for insertion into the device. This motivated studying the space-charge-limited current and electron flow in a two-dimensional (2D) planar diode with various crossed-magnetic fields using particle-in-cell (PIC) simulations. For non-magnetically insulated diodes (electrons emitted from the cathode can reach the anode), analytical and/or semi-empirical solutions are derived for electrons with nonzero monoenergetic initial velocity that agree well with PIC simulations. For magnetically insulated conditions, we developed new metrics using simulations and analytic theories to assess electron cycloidal and Brillouin flow to understand the implications of increasing injection current for 2D diodes. These analyses provide details on the operation of these devices at high currents, particularly virtual cathode operation, that may elucidate behavior near their limits of operation.</p>

Page generated in 0.3782 seconds