1 |
Continuous Matrix Product Ansatz for One-dimensional Fermi SystemsChung, Sangwoo 10 October 2016 (has links)
No description available.
|
2 |
An asymmetric multi-core architecture for efficiently accelerating critical paths in multithreaded programsSuleman, Muhammad Aater 20 October 2010 (has links)
Extracting high-performance from Chip Multiprocessors (CMPs) requires that the application be parallelized i.e., divided into threads which execute concurrently on multiple cores. To save programmer effort, difficult to parallelize program portions are often left as serial. We show that common serial portions, i.e., non-parallel kernels, critical sections, and limiter stages in a pipeline, become the critical path of the program when the number of cores increases, thereby limiting performance and scalability. We propose that instead of burdening the software programmers with the task of shortening the serial portions, we can accelerate the serial portions using hardware support. To this end, we propose the Asymmetric Chip-Multiprocessor (ACMP) paradigm which provides one (or few) fast core(s) for accelerated execution of the serial portions and multiple slow, small cores for high throughput on the parallel portions. We show a concrete example implementation of the ACMP which consists of one large, high-performance core and many small, power-efficient cores. We develop hardware/software mechanisms to accelerate the execution of serial portions using the ACMP, and further improve the ACMP by proposing mechanisms to tackle common overheads incurred by the ACMP. / text
|
3 |
Improving Energy and Area Scalability of the Cache Hierarchy in CMPsValls Mompó, Joan Josep 07 April 2017 (has links)
As the core counts increase in each chip multiprocessor generation, CMPs should improve scalability in performance, area, and energy consumption to meet the demands of
larger core counts. Directory-based protocols constitute the most scalable alternative.
A conventional directory, however, suffers from an inefficient use of storage and energy.
First, the large, non-scalable, sharer vectors consume unnecessary area and leakage, especially considering that most of the blocks tracked in a directory are cached by a single
core. Second, although increasing directory size and associativity could boost system
performance by reducing the coverage misses, it would come at the expense of area and
energy consumption.
This thesis focuses and exploits the important differences of behavior between private
and shared blocks from the directory point of view. These differences claim for a separate
management of both types of blocks at the directory. First, we propose the PS-Directory,
a two-level directory cache that keeps the reduced number of frequently accessed shared
entries in a small and fast first-level cache, namely Shared Directory Cache, and uses
a larger and slower second-level Private Directory Cache to track the large amount of
private blocks. Experimental results show that, compared to a conventional directory, the PS-Directory improves performance while also reducing silicon area and energy consumption.
In this thesis we also show that the shared/private ratio of entries in the directory varies
across applications and across different execution phases within the applications, which
encourages us to propose Dynamic Way Partitioning (DWP) Directory. DWP-Directory
reduces the number of ways with storage for shared blocks and it allows this storage to be
powered off or on at run-time according to the dynamic requirements of the applications
following a repartitioning algorithm. Results show similar performance as a traditional
directory with high associativity, and similar area requirements as recent state-of-the-art schemes. In addition, DWP-Directory achieves notable static and dynamic power
consumption savings.
This dissertation also deals with the scalability issues in terms of power found
in processor caches. A significant fraction of the total power budget is consumed by
on-chip caches which are usually deployed with a high associativity degree (even L1
caches are being implemented with eight ways) to enhance the system performance. On
a cache access, each way in the corresponding set is accessed in parallel, which is costly
in terms of energy. This thesis presents the PS-Cache architecture, an energy-efficient
cache design that reduces the number of accessed ways without hurting the performance.
The PS-Cache takes advantage of the private-shared knowledge of the referenced block
to reduce energy by accessing only those ways holding the kind of block looked up.
Results show significant dynamic power consumption savings.
Finally, we propose an energy-efficient architectural design that can be effectively applied
to any kind of set-associative cache memory, not only to processor caches. The proposed
approach, called the Tag Filter (TF) Architecture, filters the ways accessed in the target
cache set, and just a few ways are searched in the tag and data arrays. This allows the
approach to reduce the dynamic energy consumption of caches without hurting their
access time. For this purpose, the proposed architecture holds the X least significant
bits of each tag in a small auxiliary X-bit-wide array. These bits are used to filter
the ways where the least significant bits of the tag do not match with the bits in the
X-bit array. Experimental results show that this filtering mechanism achieves energy
consumption in set-associative caches similar to direct mapped ones.
Experimental results show that the proposals presented in this thesis offer a good tradeoff
among these three major design axes. / Conforme se incrementa el número de núcleos en las nuevas generaciones de multiprocesadores en chip, los CMPs deben de escalar en prestaciones, área y consumo energético
para cumplir con las demandas de un número núcleos mayor. Los protocolos basados
en directorio constituyen la alternativa más escalable. Un directorio convencional, no
obstante, sufre de una utilización ineficiente de almacenamiento y energía. En primer
lugar, los grandes y poco escalables vectores de compartidores consumen una cantidad
de energía de fuga y de área innecesaria, especialmente si se tiene en consideración que
la mayoría de los bloques en un directorio solo se encuentran en la cache de un único
núcleo. En segundo lugar, aunque incrementar el tamaño y la asociatividad del directorio aumentaría las prestaciones del sistema, esto supondría un incremento notable en el
consumo energético.
Esta tesis estudia las diferencias significativas entre el comportamiento de bloques privados y compartidos en el directorio, lo que nos lleva hacia una gestión separada para
cada uno de los tipos de bloque. Proponemos el PS-Directory, una cache de directorio de dos niveles que mantiene el reducido número de las entradas compartidas, que
son los que se acceden con más frecuencia, en una estructura pequeña de primer nivel
(concretamente, la Shared Directory Cache) y que utiliza una estructura más grande y
lenta en el segundo nivel (Private Directory Cache) para poder mantener la información
de los bloques privados. Los resultados experimentales muestran
que, comparado con un directorio convencional, el PS-Directory consigue mejorar las
prestaciones a la vez que reduce el área de silicio y el consumo energético.
Ya que el ratio compartido/privado de las entradas en el directorio varia entre aplicaciones y entre las diferentes fases de ejecución dentro de las aplicaciones, proponemos el
Dynamic Way Partitioning (DWP) Directory. El DWP-Directory reduce el número de
vías que almacenan entradas compartidas y permite que éstas se enciendan o apaguen
en tiempo de ejecución según los requisitos dinámicos de las aplicaciones según un algoritmo de reparticionado. Los resultados muestran unas prestaciones similares a un
directorio tradicional de alta asociatividad y un área similar a otros esquemas recientes
del estado del arte. Adicionalmente, el DWP-Directory obtiene importantes reducciones
de consumo estático y dinámico.
Esta disertación también se enfrenta a los problemas de escalabilidad que se pueden
encontrar en las memorias cache. En un acceso a la cache, se accede a cada vía del conjunto en paralelo, siendo
así un acción costosa en energía. Esta tesis presenta la arquitectura PS-Cache, un
diseño energéticamente eficiente que reduce el número de vías accedidas sin perjudicar
las prestaciones. La PS-Cache utiliza la información del estado privado-compartido del
bloque referenciado para reducir la energía, ya que tan solo accedemos a un subconjunto
de las vías que mantienen los bloques del tipo solicitado. Los resultados muestran unos
importantes ahorros de energía dinámica.
Finalmente, proponemos otro diseño de arquitectura energéticamente eficiente que se
puede aplicar a cualquier tipo de memoria cache asociativa por conjuntos. La propuesta, la Tag Filter (TF) Architecture, filtra las vías accedidas en el conjunto de la cache, de manera que solo se mira un número reducido de
vías tanto en el array de etiquetas como en el de datos. Esto permite que nuestra propuesta reduzca el consumo de energía dinámico de las caches sin perjudicar su tiempo de
acceso. Los resultados experimentales muestran que este mecanismo de filtrado es capaz de obtener un
consumo energético en caches asociativas por conjunto similar de las caches de mapeado
directo.
Los resultados
experimentales muestran que las propuestas presentadas en esta tesis consiguen un buen
compromiso entre estos tres importantes pilares de diseño. / Conforme s'incrementen el nombre de nuclis en les noves generacions de multiprocessadors en xip, els CMPs han d'escalar en prestacions, àrea i consum energètic per complir en les demandes d'un nombre de nuclis major. El protocols basats en directori són
l'alternativa més escalable. Un directori convencional, no obstant, pateix una utilització
ineficient d'emmagatzematge i energia. En primer lloc, els grans i poc escalables vectors
de compartidors consumeixen una quantitat d'energia estàtica i d'àrea innecessària, especialment si es considera que la majoria dels blocs en un directori només es troben en la
cache d'un sol nucli. En segon lloc, tot i que incrementar la grandària i l'associativitat del
directori augmentaria les prestacions del sistema, això suposaria un increment notable
en el consum d'energia.
Aquesta tesis estudia les diferències significatives entre el comportament de blocs privats
i compartits dins del directori, la qual cosa ens guia cap a una gestió separada per a cada
un dels tipus de bloc. Proposem el PS-Directory, una cache de directori de dos nivells que
manté el reduït nombre de les entrades de blocs compartits, que són els que s'accedeixen
amb més freqüència, en una estructura menuda de primer nivell (concretament, la Shared
Directory Cache) i que empra una estructura més gran i lenta en el segon nivell (Private
Directory Cache) per poder mantenir la informació dels blocs privats.
Els resultats experimentals mostren que, comparat amb un directori convencional, el
PS-Directory aconsegueix millorar les prestacions a la vegada que redueix l'àrea de silici
i el consum energètic.
Ja que la ràtio compartit/privat de les entrades en el directori varia entre aplicacions
i entre les diferents fases d'execució dins de les aplicacions, proposem el Dynamic Way
Partitioning (DWP) Directory. DWP-Directory redueix el nombre de vies que emmagatzemen entrades compartides i permeten que aquest s'encengui o apagui en temps
d'execució segons els requeriments dinàmics de les aplicacions seguint un algoritme de
reparticionat. Els resultats mostren unes prestacions similars a un directori tradicional
d'alta associativitat i una àrea similar a altres esquemes recents de l'estat de l'art. Adicionalment, el DWP-Directory obté importants reduccions de consum estàtic i dinàmic.
Aquesta dissertació també s'enfronta als problemes d'escalabilitat que es poden tro-
bar en les memòries cache. Les caches on-chip consumeixen una part significativa del
consum total del sistema. Aquestes caches implementen un alt nivell d'associativitat. En un accés a la cache, s'accedeix a cada via del conjunt en paral·lel, essent
així una acció costosa en energia. Aquesta tesis presenta l'arquitectura PS-Cache, un
disseny energèticament eficient que redueix el nombre de vies accedides sense perjudicar
les prestacions. La PS-Cache utilitza la informació de l'estat privat-compartit del bloc
referenciat per a reduir energia, ja que només accedim al subconjunt de vies que mantenen blocs del tipus sol·licitat. Els resultats mostren uns importants estalvis d'energia
dinàmica.
Finalment, proposem un altre disseny d'arquitectura energèticament eficient que es pot
aplicar a qualsevol tipus de memòria cache associativa per conjunts. La proposta, la Tag Filter (TF) Architecture, filtra les vies
accedides en el conjunt de la cache, de manera que només un reduït nombre de vies es
miren tant en el array d'etiquetes com en el de dades. Això permet que la nostra proposta
redueixi el consum dinàmic energètic de les caches sense perjudicar el seu temps d'accés.
Els
resultats experimentals mostren que aquest mecanisme de filtre és capaç d'obtenir un
consum energètic en caches associatives per conjunt similar al de les caches de mapejada
directa.
Els resultats experimentals mostren que les propostes presentades en aquesta tesis conseguixen un bon
compromís entre aquestros tres importants pilars de diseny. / Valls Mompó, JJ. (2017). Improving Energy and Area Scalability of the Cache Hierarchy in CMPs [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/79551
|
4 |
PROPEL: Power & Area-Efficient, Scalable Opto-Electronic Network-on-ChipMorris, Randy W., Jr. 14 August 2009 (has links)
No description available.
|
5 |
Scalable mining on emerging architecturesBuehrer, Gregory T. 07 January 2008 (has links)
No description available.
|
6 |
Efficient Fault Tolerance In Chip Multiprocessors Using Critical Value ForwardingSubramanyan, Pramod 06 1900 (has links) (PDF)
Relentless CMOS scaling coupled with lower design tolerances is making ICs increasingly susceptible to transient faults, wear-out related permanent faults and process variations. Decreasing CMOS reliability implies that high-availability systems which were previously restricted to the domain of mainframe computers or specially designed fault-tolerant systems may be come important for the commodity market as well. In this thesis we tackle the problem of enabling efficient, low cost and configurable fault-tolerance using Chip Multiprocessors (CMPs).
Our work studies architectural fault detection methods based on redundant execution, specifically focusing on “leader-follower” architectures. In such architectures redundant execution is performed on two cores/threads of a CMP. One thread acts as the leading thread while the other acts as the trailing thread. The leading thread assists the execution of the trailing thread by forwarding the results of its execution. These forwarded results are used as predictions in the trailing thread and help improve its performance. In this thesis, we introduce a new form of execution assistance called critical value forwarding. Critical value forwarding uses heuristics to identify instructions on the critical path of execution and forwards the results of these instructions to the trailing core. The advantage of critical value forwarding is that it provides much of the speed up obtained by forwarding all values at a fraction of the bandwidth cost.
We propose two architectures to exploit the idea of critical value forwarding. The first of these operates the trailing core at lower voltage/frequency levels in order to provide energy-efficient redundant execution. In this context, we also introduce algorithms to dynamically adapt the voltage/frequency level of the trailing core based on program behavior. Our experimental evaluation shows that this proposal consumes only 1.26 times the energy of a non-fault-tolerant baseline and has a mean performance overhead of about 1%. We compare our proposal to two previous energy-efficient fault-tolerant CMP proposals and find that our proposal delivers higher energy-efficiency and lower performance degradation than both while providing a similar level of fault coverage.
Our second proposal uses the idea of critical value forwarding to improve fault-tolerant CMP throughput. This is done by using coarse-grained multithreading to mul-tiplex trailing threads on a single core. Our evaluation shows that this architecture delivers 9–13% higher throughput than previous proposals, including one configuration that uses simultaneous multithreading(SMT) to multiplex trailing threads. Since this proposal increases fault-tolerant CMP throughput by executing multiple threads on a single core, it comes at a modest cost in single-threaded performance, a mean slowdown between11–14%.
|
7 |
Power Efficient Last Level Cache For Chip MultiprocessorsMandke, Aparna 01 1900 (has links) (PDF)
The number of processor cores and on-chip cache size has been increasing on chip multiprocessors (CMPs). As a result, leakage power dissipated in the on-chip cache has become very significant. We explore various techniques to switch-off the over-allocated cache so as to reduce leakage power consumed by it. A large cache offers non-uniform access latency to different cores present on a CMP and such a cache is called “Non-Uniform Cache Architecture (NUCA)”. Past studies have explored techniques to reduce leakage power for uniform access latency caches and with a single application executing on a uniprocessor. Our ideas of power optimized caches are applicable to any memory technology and architecture for which the difference of leakage power in the on-state and off-state of on-chip cache bank is significant.
Switching off the last level shared cache on a CMP is a challenging problem due to concurrently executing threads/processes and large dispersed NUCA cache. Hence, to determine cache requirement on a CMP, first we propose a new highly accurate method to estimate working set size of an application, which we call “tagged working set size estimation (TWSS)” method. This method has a negligible hardware storage overhead of 0.1% of the cache size. The use of TWSS is demonstrated by adaptively adjusting cache associativity. Our ideas of adaptable associative cache is scalable with respect to the number of cores present on a CMP. It uses information available locally in a tile on a tiled CMP and thus avoids network access unlike other commonly used heuristics such as average memory access latency and cache miss ratio. Our implementation gives 25% and 19% higher EDP savings than that obtained with average memory access latency and cache miss ratio heuristics on a static NUCA platform (SNUCA), respectively.
Cache misses increase with reduced cache associativity. Hence, we also propose to map some of the L2 slices onto the rest L2 slices and switch-off mapped L2 slices. The L2 slice includes all L2 banks in a tile. We call this technique the “remap policy”. Some applications execute with lesser number of threads than available cores during their execution. In such applications L2 slices which are farther to those threads are switched-off and mapped on-to L2 slices which are located nearer to those threads. By using nearer L2 slices with the help of remapped technology, some applications show improved execution time apart from reduction in leakage power consumption in NUCA caches.
To estimate the maximum possible gains that can be obtained using the remap policy, we statically determine the near-optimal remap configuration using the genetic algorithms. We formulate this problem as a energy-delay product minimization problem. Our dynamic remap policy implementation gives energy-delay savings within an average of 5% than that obtained with the near-optimal remap configuration.
Energy-delay product can also be minimized by improving execution time, which depends mainly on the static and dynamic NUCA access policies (DNUCA). The suitability of cache access policy depends on data sharing properties of a multi-threaded application. Hence, we propose three indices to quantify data sharing properties of an application and use them to predict a more suitable cache access policy among SNUCA and DNUCA for an application.
|
Page generated in 0.0293 seconds