• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Silicalite-1 Membranes Synthesis, Characterization, CO2/N2 Separation and Modeling

Tawalbeh, Muhammad 17 December 2013 (has links)
Zeolite membranes are considered to be a promising alternative to polymeric membranes and they have the potential to separate gases under harsh conditions. Silicalite-1 membranes in particular are easy to prepare and suitable for several industrial applications. In this research project, silicalite-1/ceramic composite membranes were prepared using the pore plugging hydrothermal synthesis method and supports with zirconium oxide and/or titanium oxide as active layers. The effect of the support’s pore size on the morphology and permeation performance of the prepared membranes was investigated using five supports with different active layer pore sizes in the range of 0.14 – 1.4 m. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), electron diffraction spectrometer (EDS), single gas and binary gas mixtures permeation tests. The results confirmed the presence of a typical silicalite-1 zeolite structure with a high internal crystalline order grown inside the pores of the active layer of the supports, with a dense film covering most of the supports active layers. Silicalite-1 crystals in the prepared membranes were preferably oriented with either a- or b-axes perpendicular to the support surface. Single gas permeation results illustrated that the observed permeances were not directly related to the kinetic diameter of permeants. Instead, the transport of the studied gases through the prepared membranes occurred by adsorption followed by surface diffusion mechanism. Binary gas tests performed with CO2 and N2 mixtures showed that the prepared membranes were selective and very permeable with CO2/N2 permselectivities up to 30 and a CO2 permeances in the order of 10-6 mol m-2 Pa-1 s-1. A model was developed, based on Maxwell−Stefan equations and Extended Langmuir adsorption isotherm, to describe the transport of binary CO2 and N2 mixtures through the prepared silicalite-1 membranes. The model results showed that the exchange diffusivities (D12 and D21) were less dependent on the feed pressure and feed composition compared to the permeances and the permselectivities. Hence, they are more appropriate to characterize the intrinsic transport properties of the prepared silicalite-1 membranes.
2

Silicalite-1 Membranes Synthesis, Characterization, CO2/N2 Separation and Modeling

Tawalbeh, Muhammad January 2014 (has links)
Zeolite membranes are considered to be a promising alternative to polymeric membranes and they have the potential to separate gases under harsh conditions. Silicalite-1 membranes in particular are easy to prepare and suitable for several industrial applications. In this research project, silicalite-1/ceramic composite membranes were prepared using the pore plugging hydrothermal synthesis method and supports with zirconium oxide and/or titanium oxide as active layers. The effect of the support’s pore size on the morphology and permeation performance of the prepared membranes was investigated using five supports with different active layer pore sizes in the range of 0.14 – 1.4 m. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), electron diffraction spectrometer (EDS), single gas and binary gas mixtures permeation tests. The results confirmed the presence of a typical silicalite-1 zeolite structure with a high internal crystalline order grown inside the pores of the active layer of the supports, with a dense film covering most of the supports active layers. Silicalite-1 crystals in the prepared membranes were preferably oriented with either a- or b-axes perpendicular to the support surface. Single gas permeation results illustrated that the observed permeances were not directly related to the kinetic diameter of permeants. Instead, the transport of the studied gases through the prepared membranes occurred by adsorption followed by surface diffusion mechanism. Binary gas tests performed with CO2 and N2 mixtures showed that the prepared membranes were selective and very permeable with CO2/N2 permselectivities up to 30 and a CO2 permeances in the order of 10-6 mol m-2 Pa-1 s-1. A model was developed, based on Maxwell−Stefan equations and Extended Langmuir adsorption isotherm, to describe the transport of binary CO2 and N2 mixtures through the prepared silicalite-1 membranes. The model results showed that the exchange diffusivities (D12 and D21) were less dependent on the feed pressure and feed composition compared to the permeances and the permselectivities. Hence, they are more appropriate to characterize the intrinsic transport properties of the prepared silicalite-1 membranes.
3

Etude spectroscopique de membranes à matrice mixte polymère/MOF pour la séparation CO2/N2 / Spectroscopic study of mixed matrix membranes polymer/MOF for CO2/N2 separation

Le Guillouzer, Clement 04 December 2017 (has links)
Dans le cadre de la réduction des émissions de gaz à effet de serre, une des approches possibles consiste en l’utilisation de membranes pour séparer le CO2 de mélanges gazeux. Durant ce travail de thèse, la séparation CO2 / N2 dans des conditions de post-combustion a été étudiée pour des membranes à matrice mixte composées de matériaux organométalliques poreux, les MOF, insérés dans des polymères. Plus spécifiquement, la thèse porte sur la caractérisation de ces membranes à l’aide des spectroscopies vibrationnelles (IR et Raman). Différentes membranes polymériques et membranes à matrice mixte basées sur des polymères commerciaux comme le Matrimid ou le PEBAX ou des nouveaux polymères comme le PIM-1 ou 6FDA-DAM plus performants ont ainsi été étudiées. La spectroscopie Raman a d’abord été utilisée pour contrôler l’homogénéité des membranes et la bonne dispersion du MOF au sein du polymère à l’aide du Raman. Les interactions entre le polymère et le MOF ont également été étudiées à l’aide des spectroscopies IR in situ et Raman, notamment pour des composites modèles permettant de maximiser les interactions entre les deux composés. La deuxième partie du travail a été axée sur la caractérisation spectroscopique (IR operando) de ces membranes dans les conditions de post-combustion, simultanément à la mesure de leurs performances en séparation. Un système de mesures dédié a donc été spécialement développé. Cette méthodologie permet de comparer directement les données d’adsorption et de séparation des membranes. En développant une nouvelle approche couplant les aspects cinétiques et thermodynamiques de l’adsorption et de la perméation, les données expérimentales ont été modélisées afin de déterminer les paramètres d’adsorption et de diffusion des différentes membranes. / In the frame of the abatement of greenhouse gases, one of the possible approaches concern the use of membranes to separate CO2 from gas mixtures. During this PhD work, CO2 / N2 separation in post-combustion conditions has been studied for Mixed Matrix Membranes constituted by porous organometallic materials, MOFs, inserted into polymers. More specifically, this work aims at the characterization of these membranes using vibrational spectroscopies (IR and Raman). Different membranes, purely polymeric or Mixed Matrix Membranes, based on commercial polymers such as Matrimid or PEBAX as well as new polymers such as PIM-1 or 6FDA-DAM have been studied. Raman spectroscopy was first used to control the homogeneity of the membranes and the good dispersion of the MOF within the polymer. The interactions between the polymer and the MOF were also studied using IR in situ and Raman spectroscopies, notably for composites allowing maximizing the interactions between the two components. The second part of the work focused on the characterization of these membranes under operating post-combustion conditions, simultaneously with the measurement of their separation performance. For this purpose, a specifically designed measurement system has been developed in order to be able to test the membranes using IR operando. This methodology allows the direct comparison of adsorption and separation data. By the development of a new approach coupling kinetic and thermodynamic aspects of adsorption and permeation, experimental data were modelled to determine adsorption and diffusion parameters of the various membranes.

Page generated in 0.1169 seconds