• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 13
  • 1
  • 1
  • Tagged with
  • 62
  • 62
  • 12
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Estimation of biomass for calculating carbon storage and CO2 sequestration using remote sensing technology in Yok Don National Park, Central Highlands of Vietnam: Event report

Nguyen, Viet Luong 15 November 2012 (has links)
Global warming and climate change are closely related to the amount of CO2 in the air. Forest ecosystem plays very important role in the global carbon cycle; CO2 from the atmosphere is taken up by vegetation and stored as plant biomass. Therefore, quantifying biomass and carbon sequestration in tropical forests has a significant concern within the United Nations Framework Convention on Climate Change (UNFCC), Kyoto Protocol and Reducing Emission from Deforestation and Forest Degradation (REDD) program for the purpose of the improvement of national carbon accounting as well as for addressing the potential areas for carbon credits, basis for payment for environmental services. The aim of research is to estimate biomass and carbon stocks in tropical forests using remote sensing data for dry forest of central highlands of Vietnam. This result showed that from satellite images of the SPOT, satellites could build the land cover map, carbon map and biomass map of Yok Don National Park, Central Highlands of Vietnam. Through which also the biomass (above ground biomass and below ground biomass) of each type of forest can be calculated. For instance the biomass of the dry forest (Dry Dipterocarp Forest) is 153.49 tones x ha-1, biomass of rich forest is 343.35 tones x ha-1, biomass of medium forest is 210.34 tones x ha-1 and biomass of poor forest & scrub are 33.56 tones x ha-1. / Sự ấm lên toàn cầu và biến đổi khí hậu có liên quan chặt chẽ với tổng lượng CO2 trong không khí. Hệ sinh thái rừng có vai trò rất quan trọng trong chu trình các bon toàn cầu; khí CO2 trong khí quyển được hấp thụ bởi thảm thực vật dưới dạng sinh khối. Vì vậy, việc xác định sinh khối và carbon tích trữ trong rừng nhiệt đới đã có được sự quan tâm đáng kể trong Công ước của Liên hiệp quốc về biến đổi khí hậu (UNFCC), Nghị định thư Kyoto và Chương trình giảm phát thải từ phá rừng và suy thoái rừng (REDD) gần đây, nhằm cho mục đích cải thiện việc tính toán lượng các bon tích trữ cũng như giải quyết các vấn đề tiềm năng cho tín dụng các bon, làm cơ sở cho việc thanh toán cho các dịch vụ môi trường. Mục đích của nghiên cứu này là ước lượng sinh khối và các bon lưu trữ trong các khu rừng nhiệt đới bằng cách sử dụng dữ liệu viễn thám, mà ở nghiên cứu này là cho rừng khộp Tây Nguyên của Việt Nam. Kết quả cho thấy rằng, từ ảnh vệ tinh SPOT có thể xây dựng bản đồ lớp phủ thực vật, bản đồ các bon và bản độ sinh khối của Vườn quốc gia Yok Đôn, Tây Nguyên Việt Nam. Qua đó đã tính toán được sinh khối (bao gồm cả trên mặt đất và dưới mặt đất) như: đối với sinh khối của rừng khô cây họ dầu (Dry Dipterocarp Forest) là 153,59 tấn/ha, sinh khối rừng giàu là 343,35 tấn/ha, sinh khối rừng trung bình là 210,34 tấn/ha và sinh khối rừng nghèo&cây bụi là 33,56 tấn/ha.
42

CO<sub>2</sub> Sequestration in Saline Aquifer: Geochemical Modeling, Reactive Transport Simulation and Single-phase Flow Experiment

Zerai, Biniam January 2006 (has links)
No description available.
43

Exploring a Distinct Element Method Approach for Coupled Chemo-Mechanical Mechanisms in Geomaterials

Panthi, Sadrish 21 August 2014 (has links)
No description available.
44

Measurement of Carbon Dioxide Mass Transfer Rate for Three Membrane Morphologies

Vijaya Kumar, Supradeep 24 September 2014 (has links)
No description available.
45

Physical and Chemical Weathering Processes and Associated CO<sub>2</sub> Consumption from Small Mountainous Rivers on High-Standing Islands

Goldsmith, Steven T. 25 September 2009 (has links)
No description available.
46

Carbon dioxide sequestration methodothologies - A review

Mwenketishi, G., Benkreira, Hadj, Rahmanian, Nejat 30 November 2023 (has links)
Yes / The process of capturing and storing carbon dioxide (CCS) was previously considered a crucial and time-sensitive approach for diminishing CO2 emissions originating from coal, oil, and gas sectors. Its implementation was seen necessary to address the detrimental effects of CO2 on the atmosphere and the ecosystem. This recognition was achieved by previous substantial study efforts. The carbon capture and storage (CCS) cycle concludes with the final stage of CO2 storage. This stage involves primarily the adsorption of CO2 in the ocean and the injection of CO2 into subsurface reservoir formations. Additionally, the process of CO2 reactivity with minerals in the reservoir formations leads to the formation of limestone through injectivities. Carbon capture and storage (CCS) is the final phase in the CCS cycle, mostly achieved by the use of marine and underground geological sequestration methods, along with mineral carbonation techniques. The introduction of supercritical CO2 into geological formations has the potential to alter the prevailing physical and chemical characteristics of the subsurface environment. This process can lead to modifications in the pore fluid pressure, temperature conditions, chemical reactivity, and stress distribution within the reservoir rock. The objective of this study is to enhance our existing understanding of CO2 injection and storage systems, with a specific focus on CO2 storage techniques and the associated issues faced during their implementation. Additionally, this research examines strategies for mitigating important uncertainties in carbon capture and storage (CCS) practises. Carbon capture and storage (CCS) facilities can be considered as integrated systems. However, in scientific research, these storage systems are often divided based on the physical and spatial scales relevant to the investigations. Utilising the chosen system as a boundary condition is a highly effective method for segregating the physics in a diverse range of physical applications. Regrettably, the used separation technique fails to effectively depict the behaviour of the broader significant system in the context of water and gas movement within porous media. The limited efficacy of the technique in capturing the behaviour of the broader relevant system can be attributed to the intricate nature of geological subsurface systems. As a result, various carbon capture and storage (CCS) technologies have emerged, each with distinct applications, associated prices, and social and environmental implications. The results of this study have the potential to enhance comprehension regarding the selection of an appropriate carbon capture and storage (CCS) application method. Moreover, these findings can contribute to the optimisation of greenhouse gas emissions and their associated environmental consequences. By promoting process sustainability, this research can address critical challenges related to global climate change, which are currently of utmost importance to humanity. Despite the significant advancements in this technology over the past decade, various concerns and ambiguities have been highlighted. Considerable emphasis was placed on the fundamental discoveries made in practical programmes related to the storage of CO2 thus far. The study has provided evidence that despite the extensive research and implementation of several CCS technologies thus far, the process of selecting an appropriate and widely accepted CCS technology remains challenging due to considerations related to its technological feasibility, economic viability, and societal and environmental acceptance.
47

A comprehensive review on carbon dioxide sequestration methods

Mwenketishi, G., Benkreira, Hadj, Rahmanian, Nejat 09 December 2023 (has links)
Yes / Capturing and storing CO2 (CCS) was once regarded as a significant, urgent, and necessary option for reducing the emissions of CO2 from coal and oil and gas industries and mitigating the serious impacts of CO2 on the atmosphere and the environment. This recognition came about as a result of extensive research conducted in the past. The CCS cycle comes to a close with the last phase of CO2 storage, which is accomplished primarily by the adsorption of CO2 in the ocean and injection of CO2 subsurface reservoir formation, in addition to the formation of limestone via the process of CO2 reactivity with reservoir formation minerals through injectivities. CCS is the last stage in the carbon capture and storage (CCS) cycle and is accomplished chiefly via oceanic and subterranean geological sequestration, as well as mineral carbonation. The injection of supercritical CO2 into geological formations disrupts the sub-surface’s existing physical and chemical conditions; changes can occur in the pore fluid pressure, temperature state, chemical reactivity, and stress distribution of the reservoir rock. This paper aims at advancing our current knowledge in CO2 injection and storage systems, particularly CO2 storage methods and the challenges encountered during the implementation of each method and analyses on how key uncertainties in CCS can be reduced. CCS sites are essentially unified systems; yet, given the scientific context, these storage systems are typically split during scientific investigations based on the physics and spatial scales involved. Separating the physics by using the chosen system as a boundary condition is a strategy that works effectively for a wide variety of physical applications. Unfortunately, the separation technique does not accurately capture the behaviour of the larger important system in the case of water and gas flow in porous media. This is due to the complexity of geological subsurface systems, which prevents the approach from being able to effectively capture the behaviour of the larger relevant system. This consequently gives rise to different CCS technology with different applications, costs and social and environmental impacts. The findings of this study can help improve the ability to select a suitable CCS application method and can further improve the efficiency of greenhouse gas emissions and their environmental impact, promoting the process sustainability and helping to tackle some of the most important issues that human being is currently accounting global climate change. Though this technology has already had large-scale development for the last decade, some issues and uncertainties are identified. Special attention was focused on the basic findings achieved in CO2 storage operational projects to date. The study has demonstrated that though a number of CCS technologies have been researched and implemented to date, choosing a suitable and acceptable CCS technology is still daunting in terms of its technological application, cost effectiveness and socio-environmental acceptance.
48

Iron and steel slag valorization through carbonation and supplementary processes

Georgakopoulos, Evangelos D. January 2016 (has links)
Alkaline industrial wastes are considered potential resources for the mitigation of CO2 emissions by simultaneously capturing and sequestering CO2 through mineralization. Mineralization safely and permanently stores CO2 through its reaction with alkaline earth metals. Apart from natural formations, these elements can also be found in a variety of abundantly available industrial wastes that have high reactivity with CO2, and that are generated close to the emission point-sources. Apparently, it is the applicability and marketability of the carbonated products that define to a great extent the efficiency and viability of the particular process as a point source CO2 mitigation measure. This project investigates the valorization of iron- and steel-making slags through methods incorporating the carbonation of the material, in order to achieve the sequestration of sufficient amounts of CO2 in parallel with the formation of valuable and marketable products. Iron- and steel-manufacturing slags were selected as the most suitable industrial byproducts for the purposes of this research, due to their high production amounts and notable carbonation capacities. The same criteria (production amount and carbonation capacity) were also used for the selection of the iron- and steel-making slag types that are more suitable to the scope of this work. Specifically for the determination of the slag types with the most promising carbonation capacities, the maximum carbonation conversions resulting from recent publications related to the influence of process parameters on the conversion extent of iron- and steel-manufacturing slags, were directly compared to each other using a new index, the Carbonation Weathering Rate, which normalizes the results based on particle size and reaction duration. Among the several iron- and steel-manufacturing slags, basic oxygen furnace (BOF) and blast furnace (BF) slags were found to combine both high production volumes and significant affinity to carbonation. In the context of this research, two different procedures aiming to the formation of value added materials with satisfactory CO2 uptakes were investigated as potential BF and BOF slags valorization methods. In them, carbonation was combined either with granulation and alkali activation (BOF slag), or with hydrothermal conversion (BF slag). Both treatments seemed to be effective and returned encouraging results by managing to store sufficient amounts of CO2 and generating materials with promising qualities. In particular, the performance of the granulation-carbonation of BOF slag as a method leading to the production of secondary aggregates and the sequestration of notable amounts of CO2 in a solid and stable form, was evaluated in this work. For comparison purposes, the material was also subjected to single granulation tests under ambient conditions. In an effort to improve the mechanical properties of the finally synthesized products, apart from water, a mixture of sodium hydroxide and sodium silicate was also tested as a binding agent in both of the employed processes. According to the results, the granules produced after the alkali activation of the material were characterized by remarkably greater particle sizes (from 1 to 5 mm) compared to that of the as received material (0.2 mm), and by enhanced mechanical properties, which in some cases appeared to be adequate for their use as aggregates in construction applications. The maximum CO2 uptake was 40 g CO2/kg of slag and it was achieved after 60 minutes of the combined treatment of alkali activated BOF slag. Regarding the environmental behavior of the synthesized granules, increased levels of Cr and V leaching were noticed from the granules generated by the combination of granulation-carbonation with alkali activation. Nevertheless, the combination of granulation with alkali activation or that of granulation with carbonation were found not to worsen, if not to improve, the leaching behaviour of the granules with regards to the untreated BOF slag. The formation of a zeolitic material with notable heavy metal adsorption capacity, through the hydrothermal conversion of the solid residues resulting from the calcium- extraction stage of the indirect carbonation of BF slag, was also investigated in this project. To this end, calcium was selectively extracted from the slag by leaching, using acetic acid of specific concentration (2 M) as the extraction agent. The residual solids resulting from the filtration of the generated slurry were subsequently subjected to hydrothermal conversion in caustic solution of two different compositions (NaOH of 0.5 M and 2 M). Due to the presence of calcium acetate in the composition of the solid residues, as a result of their inadequate washing, only the hydrothermal conversion attempted using the sodium hydroxide solution of higher concentration (2 M) managed to turn the amorphous slag into a crystalline material, mainly composed by a zeolitic mineral phase (detected by XRD), namely, analcime (NaAlSi2O6·H2O), and tobermorite (Ca5(OH)2Si6O16·4H2O). Finally, the heavy metal adsorption capacity of the particular material was assessed using Ni2+ as the metal for investigation. Three different adsorption models were used for the characterization of the adsorption process, namely Langmuir, Freundlich and Temkin models. Langmuir and Temkin isotherms were found to better describe the process, compared to Freundlich model. Based on the ability of the particular material to adsorb Ni2+ as reported from batch adsorption experiments and ICP-OES analysis, and the maximum monolayer adsorption capacity (Q0 = 11.51 mg/g) as determined by the Langmuir model, the finally synthesized product can potentially be used in wastewater treatment or environmental remediation applications.
49

Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs

Mammadova, Elnara 2011 August 1900 (has links)
Although carbonates hold more than 60 percent of the world's oil reserves, they, nevertheless, exhibit much lower average recovery factor values than terrigenous sandstone reservoirs. Thus, utilization of advanced enhanced oil recovery (EOR) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research utilizes an elastic parameter, defined in a rock physics model of poroelasticity and so-­called as the frame flexibility factor, to successfully quantify the carbonate pore types in core samples available from the Great Bahama Bank (GBB). This study shows that for carbonate samples of a given porosity the lower the frame flexibility factors the higher is the sonic wave velocity. Generally, samples with frame flexibility values of <4 are either rocks with visible moldic pores or intraframe porosity; whereas, samples with frame flexibility values of >4 are rocks with intercrystalline and microporosity. Hence, different carbonate pore geometries can be quantitatively predicted using the elastic parameters capable of characterizing the porous media with a representation of their internal structure on the basis of the flexibility of the frame and pore connectivity. In this research, different fluid substitution scenarios of liquid and gaseous CO2 saturations are demonstrated to characterize the variations in velocity for carbonate-specific pore types. The results suggest that the elastic response of CO2 flooded rocks is mostly governed by pore pressure conditions and carbonate rock types. Ultrasonic P-­wave velocities in the liquid-­phase CO2 flooded samples show a marked decrease in the order of 0.6 to 16 percent. On the contrary, samples flooded with gaseous-­phase CO2 constitute an increase in P-­wave velocities for moldic and intraframe porosities, while establishing a significant decrease for samples with intercrystalline and micro-­porosities. Such velocity variations are explained by the stronger effect of density versus compressibility, accounting for the profound effect of pore geometries on the acoustic properties in carbonates. The theoretical results from this research could be a useful guide for interpreting the response of time-­lapse seismic monitoring of carbonate formations following CO2 injection at depth. In particular, an effective rock-­physics model can aid in better discrimination of the profound effects of different pore geometries on seismic monitoring of CO2 sequestration in carbonates.
50

Modeling The Effects Of Variable Coal Properties On Methane Production During Enhanced Coalbed Methane Recovery

Balan, Huseyin Onur 01 June 2008 (has links) (PDF)
Most of the coal properties depend on carbon content and vitrinite reflectance, which are rank dependent parameters. In this study, a new approach was followed by constructing a simulation input database with rank-dependent coal properties published in the literature which are namely cleat spacing, coal porosity, density, and parameters related to strength of coal, shrinkage, swelling, and sorption. Simulations related to enhanced coalbed methane (ECBM) recovery, which is the displacement of adsorbed CH4 in coal matrix with CO2 or CO2/N2 gas injection, were run with respect to different coal properties, operational parameters, shrinkage and swelling effects by using a compositional reservoir simulator of CMG (Computer Modeling Group) /GEM module. Sorption-controlled behavior of coalbeds and interaction of coal media with injected gas mixture, which is called shrinkage and swelling, alter the coal properties controlling gas flow with respect to injection time. Multicomponent shrinkage and swelling effects were modeled with extended Palmer and Mansoori equation. In conclusion, medium-volatile bituminous coal rank, dry coal reservoir type, inverted 5-spot pattern, 100 acre drainage area, cleat permeability from 10 to 25 md, CO2/N2 molar composition between 50/50 % and 75/25 %, and drilling horizontal wells rather than vertical ones are better selections for ECBM recovery. In addition, low-rank coals and dry coal reservoirs are affected more negatively by shrinkage and swelling. Mixing CO2 with N2 prior to its injection leads to a reduction in swelling effect. It has been understood that elastic modulus is the most important parameter controlling shrinkage and swelling with a sensitivity analysis.

Page generated in 0.107 seconds