• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the role of chemical and geochemical tracers for CO2 transport and storage

Kilgallon, Rachel January 2016 (has links)
Changes in the atmospheric concentration of greenhouse gases and aerosols alter the energy balance of the climate system. CO2 is the most significant anthropogenic greenhouse gas. The primary source of the increased atmospheric concentration of CO2 since the preindustrial period is from fossil fuel exploitation. As the global need for energy is currently met by combustion of fossil fuels it is imperative that a method of reducing the levels of CO2 being emitted is used. Carbon capture and storage (CCS) is the combination of CO2 capture from large point sources, with the transport of CO2 to a suitable geological storage site where it can safely be contained. Geological CCS technology has the potential to a make a significant contribution to a low carbon technology future. As with any technology, it is imperative to identify techniques that could be used to form part of the monitoring programme. In this thesis, the role of chemical and geochemical tracers are investigated during the transport and storage of CO2. For the first part of this research, a review of the natural gas and CO2 pipeline network in North America and United Kingdom has been compiled from published literature and historical experience. Using this information, research was carried out to determine why odourising has been suggested for CO2 pipeline transport and what benefit it would add. Based on experience from natural gas, it is concluded that high pressure pipelines of CO2 through sparsely populated areas could have odourant added, but will gain little safety benefit. However, adding odourant to CO2 gas phase pipes could aid detection of leaks as well improve public assurance and should be considered in more detail. For the second part of this research, a specially constructed flow cell was designed and built to investigate how noble gases could be used as effective early warning tracers for CO2 migration in storage sites. From this equipment, experimental breakthrough curves for noble gases and SF6 travelling through a sample of Fell sandstone in relation to CO2 over a pressure gradient range of 10,000 – 50,000 Pa were generated. Although noble gases are described as conservative tracers, comparing the breakthrough curves over a range of pressure gradients show that they do not behave as simply as previously assumed. These results were then modelled using a one dimensional advective dispersion transport equation to fit curves to the experimental outputs using two different modelling approaches. A statistical approach can derive the input parameters for an analytical approach, which is needed to understand the dispersivity behaviour of the tracers. A set of values for the dispersivity of noble gases, SF6 and CO2 through porous media is presented in this research. Using a baseline value approach, initial arrival times for krypton and xenon from this research suggest that they could be used as a means of detecting CO2 migration. While helium, neon and argon appear to be unsuitable as early warning tracers for initial detection of CO2, this suggests that they can be used as part of mixture to fingerprint individual CO2 storage sites that may be in close proximity to one another. Results from the experimental and modelling analysis, identify a system where preferential paths exist depending on the change in pressure gradient. The different transport channels progress from a Darcy linear flow regime to a non-linear laminar flow. These results propose an explanation for the patterns observed from tracers in large-scale reservoirs but the output values obtained are limited by scale-dependence and would not be suitable for direct upscaling.
2

Confinement et greffage de liquides ioniques dans des membranes céramiques mésoporeuses pour le transport sélectif du CO2 / Confinement and grafting of ionic liquids in mesoporous ceramic membranes for the selective transport of CO2

Pizzoccaro, Marie-Alix 27 November 2017 (has links)
En compétition avec les alcanolamines, les liquides ioniques (LIs) sont connus pour interagir fortement et de façon réversible avec des gaz acides. Les propriétés remarquables des LIs ont conduit à la réalisation de ‘Supported Ionic Liquid Membranes’ (SILMs) qui sont des systèmes continus attractifs pour la séparation de gaz, et notamment du CO2. Dans les SILMs, il est possible d’adapter les propriétés d'adsorption/séparation en modifiant les caractéristiques du support (e.g. composition, structure poreuse, surface spécifique, etc.) et du LI (nature des cations et anions). En dépit de leur relative instabilité dans les procédés de séparation de gaz acides, les supports nanoporeux polymériques sont classiquement utilisés pour préparer des SILMs. Récemment, les supports céramiques poreux ont été considérés pour la réalisation de SILMs en raison de leurs excellentes résistances thermique et mécanique. La plupart de ces systèmes sont préparés par imprégnation/infiltration des LIs dans les pores du support céramique. Ce protocole conduit à la formation de matériaux composites dans lesquels le LI est physiquement piégé dans le support, mais souvent avec une distribution hétérogène du LI et une stabilité limitée dans le temps. Dans ce travail de thèse, réalisé en collaboration entre l’Institut Européen des Membranes (IEM) et l’Institut Charles Gerhardt de Montpellier (ICGM), nous avons développé une nouvelle génération de SILMs, dans lesquelles le LI est confiné dans les pores d'un support en céramique mésoporeux par greffage chimique. La préparation de ces systèmes se fait en trois étapes :i) Synthèse et caractérisation de nouveaux LIs portant des fonctions de couplage pour assurer leur greffage en surface des pores de la membrane céramique et détermination de la capacité d’absorption du CO2 des différents LIs synthétisés;ii) Optimisation des paramètres de greffage de ces LIs sur des poudres modèles de γ-Al2O3 et caractérisation des matériaux hybrides obtenus avec mise en évidence du greffage;iii) Transfert du protocole de greffage optimisé sur des membranes céramiques commerciales γ-alumine (fabrication de Grafted Ionic Liquid Membranes - GILMs) et évaluation de leurs performances pour la séparation du CO2.Ce travail, basé sur une approche originale, associant de nouveaux liquides ioniques et un nouveau concept de membrane à base de liquide ionique supporté, montre, au travers de plusieurs exemples l’intérêt d’une approche multi-étapes pour le développement de systèmes membranaires de séparation du CO2. / In competition with amines, ionic liquids (ILs) are known to interact strongly and reversibly with acid gases, making supported IL-membrane (SILMs) versatile materials for use in CO2 membrane separation applications. It is possible to finely tune SILMs properties for CO2 adsorption/separation by tailoring the characteristics of both the support (e.g., porosity, surface area, composition, etc.) and the ionic liquid (cations and anions). Up to now, nanoporous polymer supports have been favored for preparing SILMs, in spite of their relative instability during continuous separation processes in the presence of acidic gases. Recently, porous ceramic supports have been considered due to their excellent thermal and mechanical resistance. Most of the SILMs are prepared by impregnation/infiltration of IL in the pores of ceramic support which leads to the formation of composite membrane materials with either a physisorbed or mechanically trapped IL in the support. Despite their promising performance, such SILMs exhibit inherent limitations such as facile IL disarrangement, heterogeneous distribution, and limited stability upon ageing.In this Ph.D work, carried out in collaboration between the Institut Européen des Membranes (IEM) and the Institut Charles Gerhardt de Montpellier (ICGM), a new generation of SILMs has been developed in which ILs are confined within the pores of a mesoporous ceramic support by chemical grafting. The membranes are prepared in three steps:i) Synthesis and characterization of new ILs bearing a coupling function which allow the grafting on the surface of ceramic oxide supports and determination of the CO2 absorption capacity of the new ILs developed;ii) Elaboration and/or optimization of relevant synthesis protocols for grafting ILs on/in γ-alumina powders and physico-chemical characterizations of the hybrid materials;iii) Transfer of the optimized grafting protocols on commercial porous ceramic support with γ-alumina top-layer to produce Grafted Ionic Liquid Membranes (GILMs) and evaluate their performance for CO2 separation.An original research strategy, based on new ionic liquids and innovative membrane concepts have been addressed in this work, illustrating the contribution of a multi-step approach towards the development of membranes for CO2 separation.
3

Transporte de CO2 em meio aquoso a partir da interface agua-ar / CO2 transport in aqueous medium from water-air interface

Lage, Euler Martins 16 December 2002 (has links)
Orientador: Ines Joeks / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-11T21:07:38Z (GMT). No. of bitstreams: 1 Lage_EulerMartins_D.pdf: 1438659 bytes, checksum: 1425117a8c06f2ba303a23663ae033c4 (MD5) Previous issue date: 2002 / Resumo: Neste trabalho estudou-se o transporte de CO2 através da interface água-ar e a sua difusão na água, a partir de experimentos simples e de baixo custo, em escala laboratorial. Para este estudo foram utilizadas soluções aquosas de diferentes salinidades (0, 10, 30 e 65 g/kg), a diferentes temperaturas (25 e 40 °C). Para a determinação da concentração de CO2 dissolvido, adicionou-se indicadores ácido-base. Foram obtidas imagens das soluções a diferentes tempos após o início da difusão. As imagens foram digitalizadas e tratadas com rotinas desenvolvidas utilizando-se o software Matlab. Técnicas de calibração multivariada foram usadas para construir a escala de pH x cor, a partir de curvas de calibração construídas para cada condição experimental. Construiu-se também subrotinas para o cálculo de variogramas e a partir desses calculou-se a dimensão fractal de algumas imagens. Em ensaios iniciais, provou-se que os resultados de velocidade de difusão estão de acordo com a literatura. Nos ensaios definitivos observou-se que os padrões da difusão do CO2 foram reprodutíveis. Ensaios realizados numa cuba retangular em ausência de turbulência mostraram dois padrões de difusão do CO2. Em todas as salinidades, a 40°C e a 25°C com salinidade 65g/kg, o padrão de difusão mostrou uma frente que se desloca de uma maneira regular, na forma de uma cortina. Nas outras condições, a difusão se processa na forma de viscous fingers, caótica e irregular. A salinidade de 65 g/kg proporcionou uma diminuição significativa na velocidade de difusão para ambas as temperaturas. Os resultados foram interpretados em termos da quantidade de CO2 dissolvido, que é maior no segundo caso, e em termos da viscosidade das soluções, que é menor a menor salinidade. Em outro capítulo, estudou-se o fluxo de CO2 e outros gases causadores de efeito estufa (CH4 e N2O) em amostras de pântanos, variando-se a temperatura e a concentração atmosférica de CO2. Os experimentos de medida do fluxo destes gases apresentaram como resultados mais importantes a extrema variabilidade dos valores de fluxo de CH4 e o fato de só se obter uma relação estatisticamente significante entre a produção de CO2 a concentração desse gás na atmosfera / Abstract: In this work CO2 transport through the interface water-air and its diffusion in water, using simple and low cost experiments, in laboratorial scale was studied. Aqueous solutions of different salinities (0, 10, 30 and 65 g/kg) and temperatures (25 and 40° C) had been studied. In order to determinate dissolved CO2 acid-base indicator was added to the solution. Diffusion images were recorded by VHS camera. The images had been digitalized and treated with routines developed using Matlab software. Techniques of multivaried calibration were used to elaborate the pH x color scale from constructed curves of calibration for each experimental condition. It was also constructed subrotines for the calculation of variograms and from them it was calculated the fractal dimension of some images. CO2 diffusion rates obtained in initial assays are in accordance with literature values. In the definitive assays it was observed that the diffusion pattern of CO2 had been reproducible. Assays carried out using a rectangular vessel without turbulence showed two pattern of CO2 diffusion. To all studied salinities, at 40°C and at 25°C with salinity 65 g/kg, the diffusion pattern showed a front that dislocates in a regular way, like a curtain. In the other conditions, the diffusion was chaotic and irregular presenting structures like viscous fingers. The salinity of 65 g/kg provided a significant reduction in the speed of diffusion for both temperatures. The results had been interpreted in terms of the amount of dissolved CO2, that is higher for the second pattern of diffusion and in terms of solutions viscosity, which is proportional to salinity. In another chapter, it was studied the CO2 flow and other greenhouse gases (CH4 and N2O) in wetlands samples, varying its temperature and the atmospheric CO2 concentration. The most relevant results in these measure of the gases flow are the extreme variability of values of CH4 flow. The unique achieved statistically significant obtained relationship was between CO2 production and the concentration of this gas in the atmosphere / Doutorado / Físico-Química / Doutor em Ciências

Page generated in 0.0614 seconds