• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Confinement et greffage de liquides ioniques dans des membranes céramiques mésoporeuses pour le transport sélectif du CO2 / Confinement and grafting of ionic liquids in mesoporous ceramic membranes for the selective transport of CO2

Pizzoccaro, Marie-Alix 27 November 2017 (has links)
En compétition avec les alcanolamines, les liquides ioniques (LIs) sont connus pour interagir fortement et de façon réversible avec des gaz acides. Les propriétés remarquables des LIs ont conduit à la réalisation de ‘Supported Ionic Liquid Membranes’ (SILMs) qui sont des systèmes continus attractifs pour la séparation de gaz, et notamment du CO2. Dans les SILMs, il est possible d’adapter les propriétés d'adsorption/séparation en modifiant les caractéristiques du support (e.g. composition, structure poreuse, surface spécifique, etc.) et du LI (nature des cations et anions). En dépit de leur relative instabilité dans les procédés de séparation de gaz acides, les supports nanoporeux polymériques sont classiquement utilisés pour préparer des SILMs. Récemment, les supports céramiques poreux ont été considérés pour la réalisation de SILMs en raison de leurs excellentes résistances thermique et mécanique. La plupart de ces systèmes sont préparés par imprégnation/infiltration des LIs dans les pores du support céramique. Ce protocole conduit à la formation de matériaux composites dans lesquels le LI est physiquement piégé dans le support, mais souvent avec une distribution hétérogène du LI et une stabilité limitée dans le temps. Dans ce travail de thèse, réalisé en collaboration entre l’Institut Européen des Membranes (IEM) et l’Institut Charles Gerhardt de Montpellier (ICGM), nous avons développé une nouvelle génération de SILMs, dans lesquelles le LI est confiné dans les pores d'un support en céramique mésoporeux par greffage chimique. La préparation de ces systèmes se fait en trois étapes :i) Synthèse et caractérisation de nouveaux LIs portant des fonctions de couplage pour assurer leur greffage en surface des pores de la membrane céramique et détermination de la capacité d’absorption du CO2 des différents LIs synthétisés;ii) Optimisation des paramètres de greffage de ces LIs sur des poudres modèles de γ-Al2O3 et caractérisation des matériaux hybrides obtenus avec mise en évidence du greffage;iii) Transfert du protocole de greffage optimisé sur des membranes céramiques commerciales γ-alumine (fabrication de Grafted Ionic Liquid Membranes - GILMs) et évaluation de leurs performances pour la séparation du CO2.Ce travail, basé sur une approche originale, associant de nouveaux liquides ioniques et un nouveau concept de membrane à base de liquide ionique supporté, montre, au travers de plusieurs exemples l’intérêt d’une approche multi-étapes pour le développement de systèmes membranaires de séparation du CO2. / In competition with amines, ionic liquids (ILs) are known to interact strongly and reversibly with acid gases, making supported IL-membrane (SILMs) versatile materials for use in CO2 membrane separation applications. It is possible to finely tune SILMs properties for CO2 adsorption/separation by tailoring the characteristics of both the support (e.g., porosity, surface area, composition, etc.) and the ionic liquid (cations and anions). Up to now, nanoporous polymer supports have been favored for preparing SILMs, in spite of their relative instability during continuous separation processes in the presence of acidic gases. Recently, porous ceramic supports have been considered due to their excellent thermal and mechanical resistance. Most of the SILMs are prepared by impregnation/infiltration of IL in the pores of ceramic support which leads to the formation of composite membrane materials with either a physisorbed or mechanically trapped IL in the support. Despite their promising performance, such SILMs exhibit inherent limitations such as facile IL disarrangement, heterogeneous distribution, and limited stability upon ageing.In this Ph.D work, carried out in collaboration between the Institut Européen des Membranes (IEM) and the Institut Charles Gerhardt de Montpellier (ICGM), a new generation of SILMs has been developed in which ILs are confined within the pores of a mesoporous ceramic support by chemical grafting. The membranes are prepared in three steps:i) Synthesis and characterization of new ILs bearing a coupling function which allow the grafting on the surface of ceramic oxide supports and determination of the CO2 absorption capacity of the new ILs developed;ii) Elaboration and/or optimization of relevant synthesis protocols for grafting ILs on/in γ-alumina powders and physico-chemical characterizations of the hybrid materials;iii) Transfer of the optimized grafting protocols on commercial porous ceramic support with γ-alumina top-layer to produce Grafted Ionic Liquid Membranes (GILMs) and evaluate their performance for CO2 separation.An original research strategy, based on new ionic liquids and innovative membrane concepts have been addressed in this work, illustrating the contribution of a multi-step approach towards the development of membranes for CO2 separation.
2

Caractérisation mécanique d'un acier destiné au transport du CO2 Supercritique / Mechanical property characterization of a steel for the Transport of dense phase CO2

Ben Amara, Mohamed 17 December 2015 (has links)
Le Piégeage et le Stockage du dioxyde de Carbone (PSC) est reconnu comme ayant un rôle important dans la lutte contre le changement climatique et la réduction d’émissions de dioxyde de carbone (CO2). Ce processus consiste à capturer le CO2 des sources anthropiques, et le transporter vers des sites de stockage appropriés. Le transport de telles quantités de CO2 entraîne de nouveaux défis pour les concepteurs et les opérateurs des gazoducs. Parmi ces défis, nous citons : le comportement de phase du CO2, la température atteinte lors de la décompression, la présence des différentes impuretés et la pression de service très élevée. Malgré l’enjeu important, et contrairement au gazoduc de transport de gaz naturel et de pétrole, peu d’études ont été consacrées à la sûreté et la rentabilité des gazoducs de transport du CO2. À l’égard de ces défis industriels, cette étude a été menée pour identifier et comprendre les mécanismes de rupture des gazoducs, à haute pression, transportant du CO2 supercritique. Ce travail a engagé la mise au point d’une nouvelle approche qui anticipe l’éclatement du gazoduc. Pour répondre à cette problématique, nous avons utilisé en premier lieu une approche théorique basée sur les fondamentaux de la Mécanique de la Rupture. En second lieu, et en conjonction avec la méthode des éléments finis, nous avons développé un outil numérique robuste. L’ultime objectif de ces travaux de recherche est d’enrichir les codes de dimensionnement des gazoducs, souvent restreints au transport de gaz naturel et au matériau à faible ténacité. De plus, cette thèse apporte une large base de données d’essais de ténacité à basse température liés à des séries d’analyses par éléments finis sous le code de calcul Abaqus 12.6. La finalité de notre recherche réside dans la proposition d’une méthodologie complète d’évaluation des risques d’éclatement des gazoducs en fonction du matériau et de la nature du fluide transporté / Capture, transport, and storage of Carbon dioxide are well-known applications for their key role in the field of climate change and reduction of CO2 emissions. This process involves the use of some particular technologies, not only to collect and concentrate the CO2 emitted by the anthropogenic sources but also to transport it to a suitable storage location. The transport of such a big quantity of CO2 creates new challenges for designers and pipeline operators. For instance, CO2 phase behavior, the temperature reached during the decompression phase, the presence of various impurities as well as the high operating pressure. Contrary to natural gas and oil transportation structures, a very few studies have raised the issue of the integrity of CO2 pipeline. In order to meet the industry needs particularly in this CO2 integrity application, the present research was conducted to identify and to better comprehend pipeline failure mechanisms at high pressures. This work includes the development of a new numerical approach about running ductile fracture arrest for high pressure gas pipeline. To address this issue, we have initially used a theoretical approach based on the fundamental knowledge of Fracture Mechanics. Based on the crack-tip opening angle (CTOA) fracture criterion and the finite element method along with the node release technique, a new two-curve method (TCM) was proposed for the prediction of gas pipelines’ crack arrestability. The results of this newly developed method were discussed and compared to those obtained by using other methods commonly employed in the Fracture mechanics, for instance, Battelle-TCM, HLP and HLP-Sumitomo method

Page generated in 0.0747 seconds