• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 22
  • 19
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 180
  • 180
  • 54
  • 50
  • 39
  • 33
  • 29
  • 26
  • 24
  • 21
  • 20
  • 19
  • 18
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Tailoring the Pore Environment of Metal-Organic and Molecular Materials Decorated with Inorganic Anions: Platforms for Highly Selective Carbon Capture

Nugent, Patrick Stephen 28 October 2015 (has links)
Due to their high surface areas and structural tunability, porous metal-organic materials, MOMs, have attracted wide research interest in areas such as carbon capture, as the judicious choice of molecular building block (MBB) and linker facilitates the design of MOMs with myriad topologies and allows for a systematic variation of the pore environment. Families of MOMs with modular components, i.e. MOM platforms, are eminently suitable for targeting the selective adsorption of guest molecules such as CO2 because their pore size and pore functionality can each be tailored independently. MOMs with saturated metal centers (SMCs) that promote strong yet reversible CO2 binding in conjunction with favorable adsorption kinetics are an attractive alternative to MOMs containing unstaurated metal centers (UMCs) or amines. Whereas MOMs with SMCs and exclusively organic linkers typically have poor CO2 selectivity, it has been shown that a versatile, long known platform with SMCs, pillared square grids with inorganic anion pillars and pcu topology, exhibits high and selective CO2 uptake, a moderate CO2 binding affinity, and good stability under practical conditions. As detailed herein, the tuning of pore size and pore functionality in this platform has modulated the CO2 adsorption properties and revealed variants with unprecedented selectivity towards CO2 under industrially relevant conditions, even in the presence of moisture. With the aim of tuning pore chemistry while preserving pore size, we initially explored the effect of pillar substitution upon the carbon capture properties of a pillared square grid, [Cu(bipy)2(SiF6)] (SIFSIX-1-Cu). Room temperature CO2, CH4, and N2 adsorption isotherms revealed that substitution of the SiF62- (“SIFSIX”) inorganic pillar with TiF62- (“TIFSIX”) or SnF62- (“SNIFSIX”) modulated CO2 uptake, CO2 affinity (heat of adsorption, Qst), and selectivity vs. CH4 and N2. TIFSIX-1-Cu and SNIFSIX-1-Cu were calculated to exhibit the highest CO2/N2 and CO2/CH4 adsorption selectivites of the series, respectively. Modeling studies of TIFSIX-1-Cu and SIFSIX-1-Cu suggested that the enhancements in low pressure CO2 uptake and CO2 selectivity in the former arose from the stronger polarization of CO2 molecules by TIFSIX-1-Cu. The stronger framework-CO2 interaction at the primary binding site in TIFSIX-1-Cu correlates with the greater electronegativity of the pillar fluorine atoms relative to those in SIFSIX-1-Cu, and in turn to the higher polarizability of Ti4+ vs. Si4+. The effect of tuning pore size upon the carbon capture performance of pillared square grid nets was next investigated. Linker substitution afforded three variants, SIFSIX-2-Cu, SIFSIX-2-Cu-i, and SIFSIX-3-Zn, with pore sizes ranging from nanoporous (13.05 Å in SIFSIX-2-Cu) to ultramicroporous (3.84 Å in SIFSIX-3-Zn). Single-gas adsorption isotherms showed that SIFSIX-2-Cu-i, a doubly interpenetrated polymorph of SIFSIX-2-Cu with contracted pores (5.15 Å), exhibited far higher CO2 uptake, Qst towards CO2, and selectivity towards CO2 vs. CH4 and N2 than its non-interpenetrated counterpart. Further contraction of the pores afforded SIFSIX-3-Zn, a MOM with enhanced CO2 binding affinity and selectivity vs. SIFSIX-2-Cu-i. Remarkably, the selectivity of SIFSIX-3-Zn towards CO2 was found to be unprecedented among porous materials. Equilibrium and column breakthrough adsorption tests involving gas mixtures meant to mimic post-combustion carbon capture (CO2/N2), natural gas/biogas purification (CO2/CH4), and syngas purification (CO2/H2) confirmed the high selectivities of SIFSIX-2-Cu-i and SIFSIX-3-Zn. Gas mixture experiments also revealed that SIFSIX-3-Zn exhibited optimal CO2 adsorption kinetics. Most importantly, the CO2 selectivity of SIFSIX-2-Cu-i and SIFSIX-3-Zn was minimally affected in the presence of moisture. Modeling studies of CO2 adsorption in SIFSIX-3-Zn (experimental Qst ~ 45 kJ/mol at all loadings) revealed strong yet reversible electrostatic interactions between CO2 molecules and the SIFSIX pillars lining the confined channels of the material. Porous materials based upon the non-covalent assembly of discrete MBBs can also exhibit high surface areas and systematically tunable pore environments. Molecular porous material (MPM) platforms have begun to emerge despite the greater challenge of designing such materials in comparison to MOMs. Herein we report the tuning of pore functionality in an MPM platform based upon an extensive hydrogen-bonded network of paddlewheel-shaped [Cu(ade)4L2] complexes (ade = adenine; L = axial ligand). The substitution of Cl axial ligands with inorganic TIFSIX moieties has produced [Cu2(ade)4(TiF6)2], MPM-1-TIFSIX, a variant with enhanced CO2 separation performance and stability. Single-gas adsorption isotherms reveal that MPM-1-TIFSIX exhibits the highest CO2 uptake and CO2 Qst yet reported for an MPM as well as high selectivity towards CO2 vs. CH4 and N2. Modeling studies indicated strong electrostatic interactions between CO2 and the TIFSIX ligands lining the pores of MPM-1-TIFSIX. In addition to dramatically surpassing MPM-1-Cl with regard to CO2 separation performance, MPM-1-TIFSIX exhibits thermal stability up to 568 K and retains its performance even after immersion in water for 24 hrs. Comprehensively, the results presented herein affirm that porous materials featuring inorganic anions and SMCs can exhibit high and selective CO2 uptake, sufficient stability, and facile activation conditions without the drawbacks associated with UMCs and amines, i.e. competitive water adsorption and high regeneration energy, respectively.
112

Captage du dioxyde de carbone en postcombustion : Application à un incinérateur de déchets industriels : Etude expérimentale à l’échelle pilote / Carbon dioxide capture in post-combustion : Application to an industrial waste incinerator : Experimental study on a pilot scale

Aouini, Ismaël 02 April 2012 (has links)
Les recherches s’inscrivent dans une prospection qui étudie la viabilité de la valorisation du CO2 d’un incinérateur de déchets industriels. Plusieurs licences commerciales existent pour le captage du CO2 dans des gaz de combustion mais il n’existe pas de référence pour le traitement de fumées d’incinérateur de déchets. Les travaux évaluent, à l’aide d’une installation pilote, la viabilité du captage du CO2 en postcombustion par absorption/désorption avec un solvant à 30 % massique en monoéthanolamine (MEA). Tout d’abord, une synthèse bibliographique identifie les verrous technologiques. Puis, le fonctionnement de l’installation est détaillé. Ensuite, une étude paramétrique a évalué les performances de captage du CO2 et la consommation énergétique du pilote. Enfin, des expériences sur une période de 5 jours ont étudié la résistance chimique du solvant face des gaz de combustion. Les travaux de recherche ont permis une première validation du procédé pour un incinérateur de déchets. / This research is part of a survey designed to establish the viability of the CO2 recovery as a raw material from an industrial waste incinerator.. Several commercial licenses are available to capture CO2 in flue gas, but there are no references for incinerators. This work studies with a pilot the post-combustion CO2 capture from incinerator flue gas using absorption/desorption process with 30 %wt monoethanolamine (MEA). A literature review identifies the technology gaps. Then, the pilot setup was described. A parametric study has evaluated the pilot performance for CO2 capture and energy consumption. Finally, Long runs (5 days) have studied the solvent chemical stability in front of incinerator flue gas. The laboratory experiments show that CO2 capture form incinerator flue gas is possible.
113

The Reduction of CO<sub>2</sub> Emissions Via CO<sub>2</sub> Capture and Solid Oxide Fuel Cells

Fisher, James C., II 01 September 2009 (has links)
No description available.
114

CO2 capture from oxy-fuel combustion power plants

Hu, Yukun January 2011 (has links)
To mitigate the global greenhouse gases (GHGs) emissions, carbon dioxide (CO2) capture and storage (CCS) has the potential to play a significant role for reaching mitigation target. Oxy-fuel combustion is a promising technology for CO2 capture in power plants. Advantages compared to CCS with the conventional combustion technology are: high combustion efficiency, flue gas volume reduction, low fuel consumption, near zero CO2 emission, and less nitrogen oxides (NOx) formation can be reached simultaneously by using the oxy-fuel combustion technology. However, knowledge gaps relating to large scale coal based and natural gas based power plants with CO2 capture still exist, such as combustors and boilers operating at higher temperatures and design of CO2 turbines and compressors. To apply the oxy-fuel combustion technology on power plants, much work is focused on the fundamental and feasibility study regarding combustion characterization, process and system analysis, and economic evaluation etc. Further studies from system perspective point of view are highlighted, such as the impact of operating conditions on system performance and on advanced cycle integrated with oxy-fuel combustion for CO2 capture. In this thesis, the characterization for flue gas recycle (FGR) was theoretically derived based on mass balance of combustion reactions, and system modeling was conducted by using a process simulator, Aspen Plus. Important parameters such as FGR rate and ratio, flue gas composition, and electrical efficiency etc. were analyzed and discussed based on different operational conditions. An advanced evaporative gas turbine (EvGT) cycle with oxy-fuel combustion for CO2 capture was also studied. Based on economic indicators such as specific investment cost (SIC), cost of electricity (COE), and cost of CO2avoidance (COA), economic performance was evaluated and compared among various system configurations. The system configurations include an EvGT cycle power plant without CO2 capture, an EvGT cycle power plant with chemical absorption for CO2 capture, and a combined cycle power plant. The study shows that FGR ratio is of importance, which has impact not only on heat transfer but also on mass transfer in the oxy-coal combustion process. Significant reduction in the amount of flue gas can be achieved due to the flue gas recycling, particularly for the system with more prior upstream recycle options. Although the recycle options have almost no effect on FGR ratio, flue gas flow rate, and system electrical efficiency, FGR options have significant effects on flue gas compositions, especially the concentrations of CO2 and H2O, and heat exchanger duties. In addition, oxygen purity and water/gas ratio, respectively, have an optimum value for an EvGT cycle power plant with oxy-fuel combustion. Oxygen purity of 97 mol% and water/gas ratio of 0.133 can be considered as the optimum values for the studied system. For optional operating conditions of flue gas recycling, the exhaust gas recycled after condensing (dry recycle) results in about 5 percentage points higher electrical efficiency and about 45 % more cooling water consumption comparing with the exhaust gas recycled before condensing (wet recycle). The direct costs of EvGT cycle with oxy-fuel combustion are a little higher than the direct costs of EvGT cycle with chemical absorption. However, as plant size is larger than 60 MW, even though the EvGT cycle with oxy-fuel combustion has a higher COE than the EvGT cycle with chemical absorption, the EvGT cycle with oxy-fuel combustion has a lower COA. Further, compared with others studies of natural gas combined cycle (NGCC), the EvGT system has a lower COE and COA than the NGCC system no matter which CO2 capture technology is integrated. / QC 20111123
115

<i>In-Situ</i> Infrared Studies of Adsorbed Species in CO<sub>2</sub> Capture and Green Chemical Processes

Zhang, Long January 2016 (has links)
No description available.
116

Steam Reactivation and Separation of Limestone Sorbents for High Temperature Post-combustion CO2 Capture from Flue Gas

Wang, Alan Yao 14 August 2012 (has links)
No description available.
117

Nanomaterials for membranes and catalysts

Nassos, Stylianos January 2005 (has links)
Nanotechnology is a relatively new research topic that attracts increasing interest from scientists and engineers all over the world, due to its novel applications. The use of nanomaterials has extended to a broad range of applications, for example chemical synthesis, microporous media synthesis and catalytic combustion, contributing to achievement of improved or promising results. Microemulsion (ME) is considered a powerful tool for synthesis of nanomaterials, due to its unique properties. This thesis concentrates on the use of the ME as a catalyst synthesis route for obtaining metal nanoparticles for two challenging concepts: Hydrogen production by a membrane reactor and selective catalytic oxidation (SCO) of ammonia in gasified biomass. Particularly for the scope of the fist concept presented in this thesis, palladium nanoparticles were synthesised from ME in order to be deposited on zeolite composite membranes to improve the H2 / CO2 separation (hydrogen production) ability. The membranes impregnated with Pd nanoparticles were then tested in a metal reactor for the permeance and selectivity towards H2 and CO2. Regarding the second concept, cerium-lanthanum oxide nanoparticles were prepared by conventional methods and from ME in order to be tested for their activity towards SCO of ammonia in gasified biomass. The environmental importance of these two applications under investigation is great, since both are involved in processes contributing to the minimisation of the harmful exhaust gases released to the atmosphere from numerous industrial applications, such as the oil industry and heat-and-power production (for example combustion of natural gas or biomass in a gas turbine cycle). Regarding these applications, separation and capture of CO2 from exhaust gases and oxidation of the fuel-bound ammonia in gasified biomass directly to nitrogen, minimising at the same time NOx formation, are rated as very important technologies. The results obtained from this work and presented analytically in this thesis are considered successful and at the same time promising, since further research on the ME method can even lead to improvement of the current achievements. The first part (Chapter 2) of the thesis gives a general background on the ME method and the applications in the two concepts under investigation. Additionally, it describes how the nanoparticles corresponding to the concepts were synthesised. The second part (Chapter 3) of the thesis describes the different Pd-nanoparticle impregnation methods on the zeolite composite membranes and the results obtained form the permeation tests. In parallel with impregnation methods, various aspects that affect the Pd impregnation efficiency and the membrane performance such as duration, temperature and calcination conditions are discussed thoroughly. The third and final part of the thesis (Chapter 4) concerns the preparation of the cerium-lanthanum oxide catalysts and the activity tests (under simulated gasified biomass fuel conditions) carried out in order to monitor the activity of these catalysts towards the SCO of ammonia. Additionally, a comparison of the activity between identical catalysts prepared by conventional methods and the ME method is discussed. / QC 20101216
118

Process engineering and development of post-combustion CO2 separation from fuels using limestone in CaO-looping cycle

Kavosh, Masoud January 2011 (has links)
Global CO2 emissions produced by energy-related processes, mainly power plants, have increased rapidly in recent decades; and are widely accepted as the dominant contributor to the greenhouse gas (GHG) effect and consequent climate changes. Among countermeasures against the emissions, CO2 capture and storage (CCS) is receiving much attention. Capture of CO2 is the core step of CCS as it contributes around 75% of the overall cost, and may increase the production costs of electricity by over 50%. The reduction in capture costs is one of the most challenging issues in application of CCS to the energy industry. Using limestone in CaO-looping cycles is a promising capture technology to provide a cost-effective separation process to remove CO2 content from power plants operations. Limestone has the advantage of being relatively abundant and cheap, and that has already been widely used as a sorbent for sulphur capture. However, this technology suffers from a critical challenge caused by the decay in the sorbent capture capacity during cyclic carbonation/calcination, which results in the need for more sorbent make-up; hence a reduction in cost efficiency of the technology. The performance of sorbent influenced by several operating and reaction conditions. Therefore, much research involves investigation of influencing factors and different methods to reduce the sorbent deactivation. Cont/d.
119

Impact of Post-Synthesis Modification of Nanoporous Organic Frameworks on Selective Carbon Dioxide Capture

İslamoğlu, Timur 10 December 2012 (has links)
Porous organic polymers containing nitrogen-rich building units are among the most promising materials for selective CO2 capture and separation applications that impact the environment and the quality of methane and hydrogen fuels. The work described herein describes post-synthesis modification of Nanoporous Organic Frameworks (NPOFs) and its impact on gas storage and selective CO2 capture. The synthesis of NPOF-4 was accomplished via a catalysed cyclotrimerization reaction of 1,3,5,7-tetrakis(4-acetylphenyl)adamantane in Ethanol/Xylenes mixture using SiCl4 as a catalyst. NPOF-4 is microporous and has high surface area (SABET = 1249 m2 g-1). Post-synthesis modification of NPOF-4 by nitration afforded (NPOF-4-NO2) and subsequent reduction resulted in an amine-functionalized framework (NPOF-4-NH2) that exhibits improved gas storage capacities and high CO2/N2 (139) and CO2/CH4 (15) selectivities compared to NPOF-4 under ambient conditions. These results demonstrate the impact of nitro- and amine- pore decoration on the function of porous organic materials in gas storage and separation application.
120

SYSTEMATIC POSTSYNTHETIC MODIFICATION OF NANOPOROUS ORGANIC FRAMEWORKS AND THEIR PERFORMANCE EVALUATION FOR SELECTIVE CO2 CAPTURE

Islamoglu, Timur 01 January 2016 (has links)
Porous organic polymers (POPs) with high physicochemical stability have attracted significant attention from the scientific community as promising platforms for small gas separation adsorbents. Although POPs have amorphous morphology in general, with the help of organic chemistry toolbox, ultrahigh surface area materials can be synthesized. In particular, nitrogen-rich POPs have been studied intensively due to their enhanced framework-CO2 interactions. Postsynthetic modification (PSM) of POPs has been instrumental for incorporating different functional groups into the pores of POPs which would increase the CO2 capture properties. We have shown that functionalizing the surface of POPs with nitro and amine groups increases the CO/N2 and CO2/CH4 selectivity significantly due to selective polarization of CO2 molecule. In addition, controlled postsynthetic nitration of NPOF-1, a nanoporous organic framework constructed by nickel(0)-catalyzed Yamamoto coupling of 1,3,5-tris(4-bromophenyl)benzene, has been performed and is proven to be a promising route to introduce nitro groups and to convert mesopores to micropores without compromising surface area. Reduction of the nitro groups yields aniline-like amine-functionalized NPOF-1-NH2. Adequate basicity of the amine functionalities leads to modest isosteric heats of adsorption for CO2, which allow for high regenerability. The unique combination of high surface area, microporous structure, and amine-functionalized pore walls enables NPOF-1-NH2 to have remarkable CO2 working capacity values for removal from landfill gas and flue gas. Benzimidazole-linked polymers have also been shown to have promising CO2 capture properties. Here, an amine functionalized benzimidazole-linked polymer (BILP-6-NH2) was synthesized via a combination of pre- and postsynthetic modification techniques in two steps. Experimental studies confirm enhanced CO2 uptake in BILP-6-NH2 compared to BILP-6, and DFT calculations were used to understand the interaction modes of CO2 with BILP-6-NH2. Using BILP-6-NH2, higher CO2 uptake and CO2/CH4 selectivity was achieved compared to BILP-6 showing that this material has a very promising working capacity and sorbent selection parameter for landfill gas separation under VSA settings. Additionally, the sorbent evaluation criteria of different classes of organic polymers have been compared in order to reveal structure-property relationships in those materials as solid CO2 adsorbents.

Page generated in 0.0447 seconds