• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 526
  • 136
  • 87
  • 63
  • 36
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 1267
  • 207
  • 181
  • 157
  • 136
  • 118
  • 109
  • 96
  • 95
  • 93
  • 90
  • 86
  • 84
  • 78
  • 76
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Development of a Plasma Spray Process Monitoring System through Aeroacoustic Signal Analysis

Blair, Taylor K. 09 May 2016 (has links)
Plasma spray coatings are vital to the capabilities of jet engines. They allow engines to operate at combustion temperatures that would otherwise melt the superalloy components. Coatings tighten clearance between rotating components, increasing engine compression. They prevent chemical attack and physical erosion. Plasma spray coatings are imperative to the durability and efficient operation of the modern jet engine. In this application coating material property variation has a significant cost. In addition to the variation inherent in the process, some of the biggest contributors to coating property variation have been traced to spray gun nozzle wear and powder feed variation[3, 4]. Presented here are multiple methods utilizing flow induced acoustic signals to quantify noise parameters, measure component wear, diagnose the plasma spray process and detect coating property deviation. Methods have been developed for offline and online analysis of components in addition to online process analysis. These include characterization of nozzle wear by throat roughness measurements and nozzle casting, offline detection of nozzle wear by attenuation of discrete tone generation and broadband signal variation, and offline measurement of powder port wear by jet screech frequency variation. Online methods include pre-ignition nozzle degree of wear measurement by discrete frequency changes; online parameter change detection, process deviation detection with potential source identification, as well as variation in coating property detection by broadband acoustic signal changes. Offline methods allow for 100% accurate new nozzle manufacturer identification. By the same test nozzle wear state can be predicted with over 95% accuracy with the potential for a degree of wear determination. Internal diameter changes of less than 10 microns can similarly be detected. Analysis of online plasma spray acoustic signals as described here can distinguish nozzle state and powder feed variation with over 90% accuracy. The capabilities developed here will aid in plasma spray process variation detection and contribute to identifying the source of this variation. This will improve coating quality and consistency, reduce failures, lower operational costs and ultimately make jet engines more economical, safer, and more fuel efficient with significant environmental and financial cost reduction. / Ph. D.
152

CMZP and Mg-doped Al2TiO5 Thin film Coatings for High Temperature Corrosion Protection of Si3N4 Heat Exchangers

Nguyen, Thierry Huu Chi 28 April 1998 (has links)
Silicon nitride (Si3N4) is a potentially good ceramic material for industrial heat exchangers. However, at elevated temperatures and in coal combustion atmospheres its lifetime is severely reduced by oxidation. To increase its corrosion resistance, the formation of a protective oxidation barrier layer was promoted by the deposition of oxide thin films. Homogeneous and crack-free oxide coatings of calcium magnesium zirconium phosphate (CMZP) and magnesium doped aluminum titanate (Mg-doped Al2TiO5) were successfully deposited on Si3N4 using the sol-gel and dip-coating technique. Coated and uncoated samples were then exposed to a sodium containing atmosphere at 1000*C for 360 hours to simulate typical industrial environment conditions. Structural post-exposure analyses based on weight loss measurements and mechanical tests indicated better corrosion resistance and strength retention for CMZP coated Si3N4 compared to as received and Mg-doped Al2TiO5 coated Si3N4. This difference was attributed to the protective nature of the corrosion layer, which in the case of CMZP, significantly impeded the inward diffusion of oxygen to the Si3N4 surface. / Master of Science
153

A process for evaluating the benefits of near-infrared reflective roof coatings used on asphalt shingle roofs

Powers, Catherine N. 07 January 2016 (has links)
Reflective roof coatings keep the roof cooler by minimizing solar absorption and maximizing thermal emission. Keeping the surface of the roof cooler allows less heat to be conducted into the interior of the building which reduces the cooling load in air-conditioned buildings and improve comfort conditions in non-air conditioned buildings. A number of cool white materials, compatible with most roofing products, are available on the market. To appeal to homeowners, special cool “color” products have been developed to match the dark colors of conventional residential roofs but are highly reflective in the invisible near-infrared (NIR) spectrum. Although many studies highlight the benefits of cool white coatings on roof membranes of low-slope roofs, knowledge of NIR reflective coatings on asphalt shingles of steep slope roofs remains limited. The intent of this exploratory study is to present a process that can be used to evaluate the perceived and actual benefits of NIR coatings field-applied to asphalt shingles on single-family houses. The proposed process can be applied to a large sample of homes and occupants in a future study. A questionnaire was designed to attempt to evaluate occupants’ perceived benefits in regards to their indoor environment and occupant satisfaction following applications of NIR coatings. Along with subjective data collection, a field-experiment was developed to objectively compare the thermal performance of an NIR reflective field-coated asphalt shingle roof system with that of a conventional asphalt shingle roof system. Questionnaire results indicated that occupants did not perceive any significant changes to their indoor environment but were satisfied overall with the application and appearance of the roof coating. Additionally, 50% of occupants stated that their monthly energy costs somewhat decreased after the application. Interestingly, 63% of respondents experienced some form of roof leak following the coating application. Among those who experienced roof leaks, 100% of the roofs were 10 years or older. Field results showed that the coated roof surface was 2 to 5℉ cooler than the uncoated roof surface at midafternoon. Statistical testing for correlation between coated roof surface temperature and external conditions revealed that relative humidity was negatively correlated with coated roof temperature, while solar altitude angle was positively correlated with coated roof temperature. Multiple linear regression analysis was used to develop a model for predicting the surface temperature of the coated asphalt shingle roofs from the ambient temperature, sky conditions, dew point temperature, relative humidity, solar altitude and azimuth angle.
154

Numerical optimisation of electron beam physical vapor deposition coatings for arbitrarily shaped surfaces

Mahfoudhi, Marouen January 2015 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology. / For the last few decades, methods to improve the engine efficiency and reduce the fuel consumption of jet engines have received increased attention. One of the solutions is to increase the operating temperature in order to increase the exhaust gas temperature, resulting in an increased engine power. However, this approach can be degrading for some engine parts such as turbine blades, which are required to operate in a very hostile environment (at ≈ 90% of their melting point temperature). Thus, an additional treatment must be carried out to protect these parts from corrosion, oxidation and erosion, as well as to maintain the substrate’s mechanical properties which can be modified by the high temperatures to which these parts are exposed. Coating, as the most known protection method, has been used for the last few decades to protect aircraft engine parts. According to Wolfe and Co-workers [1], 75% of all engine components are now coated. The most promising studies show that the thermal barrier coating (TBC) is the best adapted coating system for these high temperature applications. TBC is defined as a fine layer of material (generally ceramic or metallic material or both) directly deposited on the surface of the part In order to create a separation between the substrate and the environment to reduce the effect of the temperature aggression. However, the application of TBCs on surfaces of components presents a challenge in terms of the consistency of the thickness of the layer. This is due to the nature of the processes used to apply these coatings. It has been found that variations in the coating thickness can affect the thermodynamic performance of turbine blades as well as lead to premature damage due to higher thermal gradients in certain sections of the blade. Thus, it is necessary to optimise the thickness distribution of the coating.
155

Atomization based dual regime spray coating system: design and applications

Rukosuyev, Maxym 28 August 2017 (has links)
In modern research and industrial applications, the importance of coatings can hardly be underestimated. Coatings are used extensively in optics, biomedical instruments, cutting tools, and solar panels to name a few. The primary purpose of any coating is to alter surface properties of the base material thus adding new functionality or improving the performance of the original product. A multitude of coating techniques has evolved over the years with spray coating being one of the more widely used. Some applications require deposition of materials that are either in the form of a solution or suspension. Therefore, before or during the deposition process small droplets of the said liquid are formed and transferred onto the substrate. Since differently sized droplets have different surface impact dynamics, droplet velocity at the impact plays an important role in the way it will adhere to the surface. Most spray coating techniques do not take into account the process of droplet-surface interaction which may result in overspray, poor coating thickness control, and material waste. The research presented in this dissertation outlines the supporting principles, design, fabrication and testing of an innovative spray coating system that provides the ability to fine tune coating parameters, including droplet impact velocities, to provide close to optimum deposition conditions. The core of the design consist of a dual velocity nozzle unit that ensures acceptable range of droplet velocities at the surface, while keeping droplets from accelerating excessively inside the system. Early experiments showed the system’s potential to produce nanoparticle coatings with particles uniformly distributed across the substrate. In addition, pigment coating for improved 3D scanning was also performed, thereby improving the surface definition and accuracy of the scanning results. Scalability of the system also led to experiments in applying this technology to microprinting. Preliminary microprinting results illustrated the system’s flexibility and opened new research avenues in micro-coating, microprinting, and, possibly rapid prototyping. Furthermore, thanks to the highly adaptable nature of the proposed design, seamless incorporation of a torch-like device into the nozzle unit was also possible. That provided the opportunity to perform in situ thermal processing or sintering of deposited material as well as production of a nanoparticle coating in a one-step process by thermally decomposing precursor solution. Technology developed during the research work presented in this dissertation demonstrated its ability to be adapted in a number of applications that can benefit both industry and engineering research alike. Large area coatings, nanoparticle production, micro-coating, and coatings for improved 3D scanning are just a few areas where the presented technique can already, or may, if developed further, outperform existing and widely accepted methods. Fine tuning of the system to a particular application, and tapping into its potential in other fields will be explored in future research. / Graduate
156

TRIBOLOGICAL AND WEAR PERFORMANCE OF PVD COATINGS FOR MACHINING SAF 2507 (UNS S32750) SUPER DUPLEX STAINLESS STEEL / PERFORMANCE OF PVD COATINGS FOR MACHINING UNS S32750

Bepe, Andre January 2024 (has links)
Super duplex stainless steels are applied in highly corrosive environments. To withstand such conditions, they designed with increased content of alloying elements and a duplex microstructure consisting of austenitic and ferritic phases. The result of this combination is the desired improvement in corrosion resistance, but also, the enhancement of mechanical properties. Machining super duplex stainless steels involves strain hardening of the workpiece, intense adhesive wear and elevated temperatures within the cutting zone leading to rapid tool wear and poor machined surface integrity. This research pertains to the application of commercially available PVD coatings to minimize the detrimental effects when turning super duplex stainless steel S32750. The selected coatings for this study were Alcronos (AlCrN), Alnova (AlCrN + AlCrSiN), Formera (CrN + CrAlTiN), Croma Plus (Cr + CrN + OX), Fortiphy (CrN) and Certiphy (TiAlN). The wear behavior and mechanisms in two distinct machining experiments were evaluated, and all tools failed by chipping preceded by intense adhesive wear and BUE formation. The use of AlCrN coatings improved tool life significantly. Data on the cutting force, chip formation, and workpiece surface integrity indicate less workpiece strain hardening effects, improved friction conditions at the tool/chip interface, as well as thinner chips being formed when machining with Alcronos coated carbide inserts. The micro-mechanical properties of the selected coatings were assessed and Alcronos combined high hardness and elastic modulus with a high plasticity index value that allows this coating to better manage the friction in the cutting zone and better dissipate the energy generated during cutting. / Thesis / Master of Applied Science (MASc) / Super duplex stainless steels are designed to be applied in highly corrosive environments. Like any other stainless steels, processing the super duplex grade can be challenging, especially when it comes to machining. The major causes of poor machined surface quality and rapid tool wear are high temperature, the workpiece enhanced mechanical properties, surface hardening and the tendency to stick to the cutting tool causing adhesive wear. This research explores the application of coated cutting tools to improve the machinability of the super duplex stainless steel UNS S32750. Different commercially available coatings were tested and two, Alcronos and Alnova, improved tool life significantly. These two coatings were capable of improving the friction conditions within the cutting zone which, in turn, helps with the formation of the chips and leads to a better machined surface integrity and an approximately 5 to 6 times longer tool life.
157

Polymeric interactions in tablet coating films

Sakellariou, P. January 1984 (has links)
The objective of this work was the investigation of the polymeric interactions in tablet coating films in relation with effective film formulations. The polymeric interactions were studied by means of torsional braid analysis. For this purpose an existing torsional braid analyser was improved and successfully interfaced to a microprocessor for data acquisition and reduction. Discussion on the contribution of the substrate to the thermomechanical spectra of the TBA as well as factors associated with the optimisation of the technique are presented. The dynamic mechanical behaviour of EC, HPMC, HPMCP-HP50, HPMCP-HP55, HPC and CAP film formers was studied with particular attention to structure- Tg relationship. The plasticisation of two of the most common film formers, namely EC and HPMC, with a series of polyethylene glycols was investigated. It was shown that PEGs efficiently plasticise HPMC, whereas they exhibited limited interactions with EC. The relation of the plasticising efficiency to the size and concentration of the PEGs with respect to the optimisation of the tablet coating formulation is also discussed. The thermomechanical behaviour of blends of EC with water-/pH-dependent film formers was also studied with TBA, in conjunction with the requirements for controlled release coatings. All polyblends exhibited phase separation and the required domain morphology, which was shown capable of retaining small amounts of water-/pH-dependent components even after prolonged leaching. Moreover, the modification of the thermomechanical performance of 80/20 w/w EC/HPMC blends plasticised with PEG200 and PEG400 was investigated. These studies indicated diffusion of the plasticisers into both phases. Finally, the effects of blend composition and interactions in terms of efficient sustained release coatings are identified and discussed.
158

Deformation of hard coatings on softer substrates

Elliott, David Mark January 1991 (has links)
No description available.
159

Mechanics of sprayed composite coatings

Ramm, David Alfred John January 1995 (has links)
No description available.
160

The erosion of plasma-sprayed alumina coatings by solid particle impact

Zhang, Xing Xing January 1991 (has links)
No description available.

Page generated in 0.0275 seconds