11 |
Aspects of the reproductive cycle of Atlantic cod, Gadus morhua L., from inshore Newfoundland /Rideout, Rick M. January 1999 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 1999. / Restricted until November 2000. Bibliography: leaves 119-131.
|
12 |
Brown cod and bay stocks : science and fish harvesters' knowledge of colouration in populations of Atlantic cod (Gadus morhua) in Newfoundland and Labrador /Gosse, Karen R., January 2002 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2003. / Bibliography: leaves 133-139.
|
13 |
Interpopulation differences in growth, food conversion efficiency and swimming performance of (0+) juvenile Atlantic cod (Gadus morhua) /Wijekoon, Manjusri Pandula Atapattu, January 2004 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2004. / Restricted until October 2005. Bibliography: leaves 80-104.
|
14 |
Development of foraging and digestive function in Atlantic cod (Gadus morhua) larvae in response to diet /O'Brien MacDonald, Kelly, January 2004 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2004. / Includes bibliographical references.
|
15 |
Specific Dynamic Action, Growth and Development in Larval Atlantic Cod, Gadus MorhuaGeubtner, Jessica A. January 2003 (has links) (PDF)
No description available.
|
16 |
Dietary Studies for Larviculture of Atlantic Cod (Gadus morhua)Hansen, Jennifer Muscato January 2007 (has links) (PDF)
No description available.
|
17 |
Multistage and multiple biomass approaches to efficient biological nitrogen removal using biofilm culturesL.Hughes@murdoch.edu.au, Leonie Hughes January 2008 (has links)
Nitrogen removal from wastewater is important for the revention of significant health and environmental impacts such as eutrophication. Nitrogen removal is achieved by the combined action of nitrification and denitrification. Nitrification is performed by autotrophic, slow growing microorganisms that require oxygen and are inhibited in the presence of denitrifiers when oxygen and COD are available due to competition for oxygen. Denitrification however, performed by relatively fast growing heterotrophic bacteria, is inhibited by oxygen and requires COD. This implies that nitrification and denitrification are mutually exclusive. The supply of oxygen to a fresh wastewater, high in ammonia and COD, causes waste of both oxygen and COD. Conservation of COD is therefore critical to efficient wastewater treatment. The approach investigated in this study to achieve complete nitrogen removal was to physically separate the nitrification and denitrification biomasses into separate bioreactors, supplying each with appropriate conditions for growth and activity.
A storage driven denitrification sequencing batch biofilm reactor (SDDR) was established which exhibited a high level of COD storage (up to 80% of influent COD) as poly-B-hydroxybutyrate capable of removing >99% of nitrogen from wastewaters with a C/N ratio of 4.7 kg COD/kg NNO3 . The SDDR was combined in sequential operation with a nitrification reactor to achieve complete nitrogen removal. The multiple stage, multiple biomass reactor was operated in sequence, with Phase 1 - COD storage in the storage driven denitrification biofilm; Phase 2 - ammonia oxidation in the nitrification reactor; and Phase 3 - nitrate reduction using the stored COD in the storage driven denitrification reactor. The overall rate of nitrogen removal observed was up to 1.1 mmole NH3 L1 h1 and >99% of nitrogen could be removed from wastewaters with a low C/N ratio of 3.9 kg COD/kg NNH3.
The multiple stage, multiple biomass system was limited in overall nitrogen removal the reduction in pH caused by nitrification. A parallel nitrification-denitrificatio (PND) reactor was developed in response to the pH control issue. The PND reactor was operated with Phase 1 COD storage in the storage driven denitrification biofilm and Phase 2 simultaneous circulation of reactor liquor between the denitrification and nitrification biofilms to achieve complete nitrogen removal and transfer of protons. The PND reactor performed competitively with the multistage reactor (removal of >99% nitrogen from wastewaters with feed ratios of 3.4 kg COD/kg NNH3) without the need for addition of buffering material to oderate the pH.
|
18 |
Biology and management of Pacific cod (Gadus macrocephalus Tilesius) in Port Townsend, Washington /Karp, William A. January 1982 (has links)
Thesis (Ph. D.)--University of Washington, 1982. / Vita. Bibliography: leaves [112]-119.
|
19 |
Increasing the spawning biomass of northern Atlantic cod, Gadus Morhua, through the release of mature farmed fish /Hiscock, H. Wade January 1997 (has links)
Thesis (M. Sc.), Memorial University of Newfoundland, 1998. / Bibliography: leaves 71-77.
|
20 |
Disquisitio comparativa chemico-medica de tribus olei jecoris aselli speciebusJongh, Ludwich Joseph de. January 1842 (has links)
Proefschrift--Utrecht.
|
Page generated in 0.015 seconds