• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 139
  • 24
  • 23
  • 8
  • 7
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 259
  • 111
  • 105
  • 47
  • 38
  • 37
  • 34
  • 33
  • 29
  • 28
  • 28
  • 28
  • 23
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Projeto de um gerador com ÃmÃs permanentes e fluxo axial de 50 KW para aplicaÃÃo em geraÃÃo eÃlica / Design of a generator with permanent magnet and axial flow of 50 KW for application in wind distribuided generation

Flavio Jose Alexandre Linard 29 April 2014 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Atualmente, existe uma tendÃncia mundial para a busca de novas fontes de energia com a menor agressÃo possÃvel ao meio ambiente e ao homem, principalmente com vistas à geraÃÃo de eletricidade. No Brasil, de acordo com o banco de informaÃÃo de geraÃÃo da AgÃncia Nacional de Energia ElÃtrica - ANEEL, a geraÃÃo por fonte eÃlica jà totaliza cerca de 2.788 MW de potÃncia em operaÃÃo. AlÃm dos jà instalados, 163 parques eÃlicos estÃo em construÃÃo e mais 127 foram outorgados pelo governo, nos diversos estados brasileiros. Este cenÃrio, favorÃvel ao desenvolvimento de energia eÃlica, leva a diversos trabalhos na Ãrea, relacionados tanto à previsÃo de vento, como a novas mÃquinas elÃtricas para aerogeradores. Considerando esta tendÃncia, a presente dissertaÃÃo visa o projeto de um gerador elÃtrico, com potÃncia de 50 kW, utilizando-se ÃmÃs permanentes de NeodÃmio-Ferro-Boro, para aplicaÃÃo na geraÃÃo de eletricidade a partir da energia eÃlica. A topologia escolhida para o gerador à a da mÃquina de Torus, caracterizada por ser simples, compacta e de alta eficiÃncia. A modelagem 3d eletromagnÃtica para anÃlises dos campos no gerador elÃtrico à feita atravÃs do software comercial COMSOL MultiphysicsÂ, que utiliza o MÃtodo de Elementos Finitos (MEF) para discretizar o domÃnio estudado. / Today, there is a worldwide trend in the search for new sources of energy with the lowest possible environmental pollution and the minimum hazard for the human health, mainly due to the generation of electricity. In Brazil, according to the information database for electricity generation from AgÃncia Nacional de Energia ElÃtrica - ANEEL, the energy production through wind power totalizes about 2.788 MW of power in operation now. Additionally, 163 wind farms are under construction and 127 more were allowed by the government for all the Brazilian states. This scenery, favorable to the development of wind energy, leads to several works of research in the area, related to both wind forecast and the new electric machines for wind turbines. Considering such tendency, this dissertation aims to project an electric generator with the power of 50kW, using Neodymium-Iron-Boron permanent magnets, to be exploited in generating electricity from wind energy. The chosen topology for the generator is that of the Torus machine, characterized by being simple and compact as well as by having a high efficiency. The electromagnetic modeling for analysis of the electric field generator is made by employing the commercial software COMSOL MultiphysicsÂ, which uses the Finite Element Method (FEM) to discretize the studied domain.
102

Simulation of Intermittent Current Interruption measurements on NMC-based lithium-ion batteries

Lindqvist, Daniel January 2017 (has links)
The objective of this report was to implement battery cycling and an intermittent current interruption (ICI) method for determining battery resistance into a simple lithium-ion battery model in the finite element methods (FEM) program COMSOL Multiphysics, andevaluate how accurately the model reflects the behaviour of voltage and internal resistance with respect to experimental results. The ICI technique consists of repeating the steps of first having a longer charging period and then having a short current interruption, where the internal resistance is calculated from the voltage drop that occurs when the current is turned off. The model was evaluated against measurements, made with the same technique (ICI), on assembled NMC-graphite batteries. Codes written in the statistical programming language “R” were used to process the data from both COMSOL and the experiments. Both the batteries and the model were constructed with a reference electrode, to enable measurement of each electrode by itself. The results as documented in this report show that it is possible to simulate the measurement technique in COMSOL, but that both the resistance and voltage profiles differed quite a lot from the behaviour of the tested batteries. The resistance of the positive electrode did however give good results and it was possible to improve the model by changing some parameters. The magnitude of the resistance, which was already quite close, could be improved by changing the porosity and particle size, and the voltage profiles were improved when using voltage-data achieved from the real measurements.
103

Simulation Studies on ECG Vector Dipole Extraction in Liquid Medium

Michael, Pratheek 23 March 2017 (has links)
To circumvent some inherent problems in the conventional ECG, this research reinvestigates an ‘unassisted’ approach which enables ECG measurement without the placement of leads on the body. Employed in this research is a widely accepted assumption that the electrical activity of the heart may be represented, largely, by a 3-D time-varying current dipole (3D-CD). From the PhysioBank database, mECG and fECG data were obtained, and Singular Value Decomposition (SVD) was performed to estimate the time-varying Vector ECG dipole. To determine the sensing matrix responsible for transforming the activity of the 3D-CD into the potential distribution on the surface of the medium, the ECG vector dipole signals are used to excite a 3D-CD in water medium of a specific shape-containing-ellipsoid model(s) in COMSOL tool. The sensing matrix thereby estimated is then utilized to reconstruct the 3D-CD signals from the signals measured by the probes on the surface of the medium. Fairly low NRMSEs (Normalized Root-Mean-Squared Errors) are attained. The approach is also successfully extended to the case of two ellipsoids, one inside the other, representing a pregnant female subject. Low NRMSEs (Normalized Root-Mean-Squared Errors) are again observed.
104

Modelling and assessment of energy performance with IDA ICE for a 1960's Mid-Sweden multi-family apartment block house

Arnaiz Remiro, Lierni January 2017 (has links)
The present thesis has been carried out during the spring of 2017 on behalf of Gavlegårdarna AB. This is a public housing company in Gävle (Sweden) which is a large energy consumer, over 200 million SEK per year, and has the ambitious goal of reduce its energy consumption by 20 % between 2009 and 2020. Many multi-family apartment blocks were built during the "million programme" in the 60’s and 70’s when thermal comfort was the priority and not the energy saving. Nevertheless, this perspective has changed and old buildings from that time have been retrofitted lately, but there are many left still. In fact, one of these buildings will be retrofitted in the near future so a valid model is needed to study the energy saving measures to be taken. The aim of this thesis is to get through a calibration process to obtain a reliable and valid model in the building simulation program IDA ICE 4.7.1. Once this has been achieved it will be possible to carry out the building’s energy performance assessment. IDA ICE has shown some limitations in terms of thermal bridges which has accounted for almost 15 % of total transmission heat losses. For this reason, it is important to make a detailed evaluation of certain joints between elements for which heat losses are abundant. COMSOL Multiphysics® finite element software has been used to calculate these transmittances and then use them as input to IDA ICE to carry out the simulation. Through an evidence-based methodology, although with some sources of uncertainty, such as, occupants’ behaviour and air infiltration, a valid model has been obtained getting almost the same energy use for space heating than actual consumption with an error of 4% (Once the standard value of 4 kWh/m2 for the estimation of energy use in apartments' airing has been added). The following two values have been introduced to IDA ICE: household electricity and the energy required for heating the measured volume of tap water from 5 °C to 55 °C. Assuming a 16 % of heat losses in the domestic hot water circuit, which means that part of the heat coming from hot water heats up the building. This results in a lower energy supply for heating than the demanded value from IDA ICE. Main heat losses have been through transmission and infiltration or openings. Windows account 11.4 % of the building's envelope, thus the losses through the windows has supposed more than 50 % of the total transmission losses. Regarding thermal comfort, the simulation shows an average Predicted Percentage of Dissatisfied (PPD) of 12 % in the worst apartment. However, the actual value could be considerably lower since the act of airing the apartments has not been taken into account in the simulation as well as the strong sun's irradiation in summer which can be avoided by windows shading. So, it could be considered an acceptable level of discomfort. To meet the National Board of Housing Building and Planning, (Boverket) requirements for new or rehabilitated buildings, several measures should be taken to improve the average thermal transmittance and reduce the specific energy use. Among the energy saving measures it might be interesting replace the windows to 3 pane glazing, improve the ventilation system to heat recovery unit, seal the joints and intersections where thermal bridges might be or add more insulation in the building’s envelope.
105

Membraneless Water Purification via diffusiophoresis

Lyu, Shicheng 16 May 2020 (has links)
Clean water is hard to obtain in certain areas, such as remote locations and during emergency response. Our study developed a membraneless water purification system using diffusiophoresis and tested the influence of various factors (gas pressure, liquid flow rate, etc.) on the turbidity of filtered water. The main component in the separation system is a tube-in-tube-in-tube separator. The inner tube and the middle tube are made of a semipermeable material (Teflon AF-2400), which allows gas (CO2) to permeate through it, but retains liquid (water). In this strategy, the CO2 permeates through the inner tube (the end is sealed) then dissolves into the dirty water/particle suspension passing through the middle tube. It then diffuses radially to the outer tube, where a vacuum collects the CO2, forming a concentration gradient of ions through the water, which induces the migration of charged particles to concentrate at the inner wall of the middle tube. The vacuum phase in the outer tube can increase the concentration gradient of ions in the water and recycle the CO2. Finally, purified water can be collected from the center of the middle tube by a needle in the effluent. The purification system is able to take initial turbid water (243 NTU) to below the WHO drinking water standard (
106

Detection Method of Subclinical Atherosclerosis of the Carotid Artery with a Hemodynamics Modeling Approach

Peressini, Marisa 01 June 2018 (has links)
Subclinical atherosclerosis is an important area of research to evaluate stroke risk and predict localization of plaque. The current methods for detecting atherosclerosis risk are insufficient because it is based on The Framingham Risk Score and carotid intima media thickness, therefore an engineering detection model based on quantifiable data is needed. Laminar and turbulent flow, dictated by Reynolds number and relative roughness, was modeled through the carotid artery bifurcation to compare shear stress and shear rate. Computer-aided design and fluid flow software were used to model hemodynamics through the carotid artery. Data from the model was derived from governing equations programmed in COMSOL for both laminar and turbulent flow. A carotid artery model is accurate enough to describe how relative roughness, flow profiles, and shear rate can be a good prediction of subclinical atherosclerosis.
107

Simulace mazání bodových kontaktů metodou konečných prvků / Simulation of point contact lubrication by finite element method

Hrdonka, Štěpán January 2018 (has links)
This diploma thesis is concerned with simulation of elastohydrodynamic lubrication of point contacts using the finite element method. The first part of the thesis focuses on the study of the issue and introduces equations for model creation and numerical methods which can be used for EHD calculation. The most suitable solution approach has been chosen from the overview, namely the Full system approach. The software we chose for applying the method was COMSOL Multyphysics. The following part of the thesis deals with model’s creation and gives its elaborate description. We introduce models for calculation of line and point EHD lubrication for newtonian lubricants and, last but not least, we also present a model for calculation of point contact EHD lubrication for non-newtonian lubricants. The next part of the thesis then verifies all the models. That is achieved by comparing the calculated results to results from different papers. The conclusive part of the thesis then examines the matches of acquired results to different prediction relationships and experiments.
108

Vícepásmová magnetická anténa / Multiband magnetic antenna

Ryšánek, Martin January 2010 (has links)
The thesis deals with a parametric analysis of a magnetic multiband antenna and explains the principle of its operation. In the thesis, an optimization of the antenna by the particle swarm optimization is performed in order to meet impedance matching in prescribed frequency bands.
109

Numerické metody výpočtu elektromagnetického pole / Numerical method for computing electromagnetic field

Bíreš, Pavol January 2010 (has links)
The aim of the work is to study the electromagnetic field theory, finite element method and the interaction of electromagnetic field with tissues. Gained knowledge is then used to calculate spreading of the electromagnetic field in the microwave field and to create a temperature profile of spreading the electromagnetic fields in human tissue. The finite element method was implemented in the Matlab programming environment, where the 1D model was created in the frequency and time domain and a simple 2D model created in time domain. The program was developed to analyze spreading electromagnetic wave. Another part of work was done in the programming environment of COMSOL Multiphysics. In this case was the human leg exposed to electromagnetic fields. The analysis determined the changes of temperature in these biological tissues for six minutes.
110

Modelování ohřevu tkání v KV diatermii / Model of tissue heating by KV diathermy

Bažantová, Lucie January 2012 (has links)
This thesis deals with the basic theory of the electromagnetic field in the first part and the field interactions with biological tissues. Than describes shortwave diathermy as a technique used for purposes of medical treatment. The aim is to built a model of tissue heating in shortwave diathermy in COMSOL Multiphysics environment, so there is included a description of the programming environment, including the mathematical method that COMSOL uses for calculations. The output of the whole work is a model of the lower limb in the knee part and display the results after his diathermy heating.

Page generated in 0.0158 seconds