• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 139
  • 24
  • 23
  • 8
  • 7
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 259
  • 111
  • 105
  • 47
  • 38
  • 37
  • 34
  • 33
  • 29
  • 28
  • 28
  • 28
  • 23
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Planární obvodové prvky na technické keramice s nízkou teplotou výpalu / Planar Circuits Elements on Low Temperature Cofired Ceramics

Kosina, Petr January 2012 (has links)
The present work deals with the design and manufacturing of 3D structures in LTCC (Low Temperatue Cofired Ceramics) technology. To use this technology LTCC workplaces have been designed and technological processes for high quality reproducible production were suggested. Technological possibilities of low temperature co-fired ceramics were demonstrated in the design and manufacturing of pressure sensors, electrode systems for ozone generators, planar circuit elements (coils and transformers) and in the design a special package for middle-power terahertz modulator. Design of selected parts of respective devices was proved by simulations in COMSOL Multiphysics. The work provides new insights into the structure of power integrated circuits sleeves and structure of electrode systems for different types of electrical discharges. Results of this work can contribute significantly in the application of planar circuit elements, in the development of different types of sensors, in the design of atypical types of packaging or in the design of electrode systems for capacitive coupled electrical discharges.
112

Investigation of new heat exchanger design performance for solar thermal chemical heat pump

Cordova, Cordova January 2013 (has links)
The emergence of Thermally Driven Cooling system has received more attention recently due to its ability to utilize low grade heat from engine, incinerator or simple flat plate solar collector which are considered as renewable energy sources. ClimateWell AB located in Stockholm has been developing this cooling system based on its patented chemical heat pump technology. The heat pump with its tube shape is put under the absorber as in simple flat plate solar collector making it possible be directly attached on the roof without any additional solar collector. A high performance heat exchanger is needed by its reactor to absorb the energy efficiently during the desorption process as well as to recover heat during the absorption process. Current heat exchanger design has direct contact with the tube’s surface, yet air gaps between the tube and heat exchanger result in alower amount of heat transferred and non-uniform heat distribution across this surface. Moreover, a special treatment which cannot be done by machinery has to be performed in attaching the tube with this heat exchanger. It becomes a problem during mass production since a lot of man power is needed. A new heat exchanger design was proposed to overcome those limitations. This design has annulus which is filled with thermal fluid inside. This fluid will make perfect contact to the heat pump tube’s surface and eliminate the air gap. Furthermore, the need of man power in its production can be minimized. Even though perfect contact can be achieved, the fluid in this new design will increase thermal resistance in the radial direction. Therefore, an investigation has to be conducted to evaluate the performance of this new heat exchanger design based on heat transfer coefficient under steady state condition. The performance investigation also included the influence of various thermal fluids which will be used for this new heat exchanger. The work performed by doing simulation in COMSOL continued with validation of the result with experiment in laboratory. New heat exchanger design efficiency was only 50% while the current one was 82% during the desorption process. In this process, the fluid’s thermal conductivity was the most influencing fluid property. During absorption process, two heat recovery methods are used. First is by flowing the fluid inside the annulus and second is by using additional heat recovery pipe that is attached outside the heat exchanger surface. The first method gave the highest UA value around 34 W/K while the second one gave almost the same value as the current design which is around 11 W/K. In the first method, the thermal fluid’s viscosity strongly influenced its UA value while the second method is greatly influenced by fluid’s heat conductivity.
113

Coupled Modelling of Gas Migration in Host Rock and Application to a Potential Deep Geological Repository for Nuclear Wastes in Ontario

Wei, Xue 27 May 2022 (has links)
With the widening and increasing use of nuclear energy, it is very important to design and build long-term deep geological repositories (DGRs) to manage radioactive waste. The disposal of nuclear waste in deep rock formations is currently being investigated in several countries (e.g., Canada, China, France, Germany, India, Japan and Switzerland). In Canada, a repository for low and intermediate level radioactive waste is being proposed in Ontario’s sedimentary rock formations. During the post-closure phase of a repository, significant quantities of gas will be generated from several processes, such as corrosion of metal containers or microbial degradation of organic waste. The gas pressure could influence the engineered barrier system and host rock and might disturb the pressure-head gradients and groundwater flows near the repository. An increasing gas pressure could also cause damage to the host rock by inducing the development of micro-/macro-cracks. This will further cause perturbation to the hydrogeological properties of the host rock such as desiccation of the porous media, change in degree of saturation and hydraulic conductivity. In this regard, gas generation and migration may affect the stability or integrity of the integrate barriers and threaten the biosphere through the transmitting gaseous radionuclides as long-term contaminants. Thus, from the safety perspective of DGRs, gas generation and migration should be considered in their design and construction. The understanding and modelling of gas migration within the host rock (natural barrier) and the associated potential impacts on the integrity of the natural barrier are important for the safety assessment of a DGR. Therefore, the key objectives of this Ph.D. study include (i) the development of a simulator for coupled modelling of gas migration in the host rock of a DGR for nuclear waste; and (ii) the numerical investigation of gas migration in the host rock of a DGR for nuclear waste in Ontario by using the developed simulator. Firstly, a new thermo-hydro-mechanical-chemical (THMC) simulator (TOUGHREACT-COMSOL) has been developed to address these objectives. This simulator results from the coupling of the well-established numerical codes, TOUGHREACT and COMSOL. A series of mathematical models, which include an elastoplastic-damage model have been developed and then implemented into the simulator. Then, the predictive ability of the simulator is validated against laboratory and field tests on gas migration in host rocks. The validation results have shown that the developed simulator can predict well the gas migration in host rocks. This agreement between the predicted results and the experimental data indicates that the developed simulator can reasonably predict gas migration in DGR systems. The new simulator is used to predict gas migration and its effects in a potential DGR site in Ontario. Valuable results regarding gas migration in a potential DGR located in Ontario have been obtained. The research conducted in this Ph.D. study will provide a useful tool and information for the understanding and prediction of gas migration and its effect in a DGR, particularly in Ontario.
114

Investigation of the performance of individual sorption components of a novel thermally driven heat pump for solar applications

Blackman, Corey January 2014 (has links)
An enhanced-modularity thermally driven chemical heat pump was conceptualised as a second generation product for various heating and cooling applications with special emphasis on solar applications. The typical characteristics of the absorption heat pump were studied and the key performance parameters were selected for further investigation. An experimental test rig was constructed to allow for the testing of each component’s performance characteristics with special attention being paid to the ability to interchange components to test various configurations as well as to the facilitation of standardised relatively rapid testing. The heat transfer coefficient of the condenser/evaporator was found to be between 260 and 300 W/m2-°C during evaporation and between 130 and 170 W/m2-°C during condensation. Salt type has major impact on the system’s cooling power and cooling energy with the LiBr and water sorption pair having a 62% higher cooling/heating power than LiCl with the same matrix type and thickness. Matrix types and sorption pairs were compared with regards to the principal parameters of power and energy density with results ranging from 60 to 163 Wh/litre. The final section of the study tackled the theoretical foundation behind the system processes with modelling and simulation of the processes and comparison with the experimental data. The model makes the foundation of the continuous development of a more detailed and accurate physical model to enhance the design and optimisation process of the system.
115

Advanced Thermal Energy Storage Heat Transfer Study with Use of Comsol and Matlab

Johansson, Petter January 2011 (has links)
The interest in storing latent energy in phase change materials has risen over the last years as the need grows for more energy efficient systems. By storing energy, free chilling and heat can be saved for later use during high load hours. Thus the gap between supply and load can be overcome. It is an efficient way to provide both cooling and heating to buildings using phase change material (PCM) as they take up much less volume compared to a corresponding water-cistern with the same amount of stored energy. Low thermal conductivity of most of the PCMs can be compensated with advanced heat transfer design, however impact of different heat transfer mechanisms is not explicitly studied. In this work, a heat transfer study has been made on a finned cylindrical PCM heat exchanger with focus on determining the heat transfer effect of convection in non-gelled PCMs and the different ways to model such a system in a two dimensional axis-symmetric plane. The first and simpler numerical model of the two was built using Matlab, where the convection effect was simulated using an enhanced-conduction factor based on empirical equations. The other model was built in a CFD environment and simulates the convection with more complexity and more realistic behavior. The results show that the convection may contribute to 65% of the total heat transfer in non-gelled PCMs at a certain time and that using empirical equations for simulating convection is a fast and easy way to estimate the heat transfer, though not a recommended method for high accuracy results. The study also showed that because of the gravity-induced convection, the angle of the cylindrical finned heat exchanger affects the heat transfer and that more fins, while increasing the overall heat transfer rate, inhibits the effect of convection in a vertically positioned heat exchanger.
116

Modeling for delineation of protection areas for shallow groundwater resources in peri-urban areas.

Liu, Ting January 2012 (has links)
Bwaise III in Kampala, Uganda is a densely populated informal settlement with a shallow groundwater table and inadequate basic services. High risk of groundwater contamination will bring health problem to the local residents. In this study, a large dimension (300 m in length) 2D model was developed to depict the hydrogeological condition and to examine the response to different rainfall infiltration rate on the groundwater table. The boundary condition of the drainage system plays an important role in modeling the groundwater flow. The simulation results show that water in the drain will flow into the aquifer when the drain is full, otherwise the drain will act as a sink for ground water. Advective transport of phosphorus results in no pollutants reaching or percolating into the drain. The integration of phosphorous concentra-tion flowing out of Domain 3 (pollutant inlet) corresponds to the infiltration rate and the plume moves faster during the wet season which brings in more phosphorous compared with the dry season. With sorption, all the phosphorus was adsorbed within the top soil. A simplified 3D model was set up to illustrate the flow field. Additional simulation can be undertaken within this 3D frame for more realistic calculation and consistent prediction.
117

Steady-state hydrogeological modelling in order to investigate groundwater sensitivity.

Engström, Iris January 2013 (has links)
Growing regions and tighter zoning in urban areas are pushing the hydrological bal-ances to establish new equilibriums which are causing a stress on the groundwater. Urbanization can affect the groundwater in several ways in which both raising and lowering of groundwater tables are a possibility. Both ways, sudden changes may bring on socioeconomic costs for the unprepared. Hydrogeological modelling creates the possibilities to visualise processes that cannot be seen with the naked eye. By combin-ing knowledge about the studied area from tests and measurements a conceptual model and additionally a numerical model can be created. To study the magnitude groundwater sensitivity to changes in land-cover a hydrogeological model was created using COMSOL multiphysics within the frame of a case study concerning a horse racetrack located in Täby, north of Stockholm. The model was calibrated against known data and was the applied on a future scenario where both the land-use and climate were changed. The outcome of the model showed that hydrogeological mod-elling is sensitive to the amount and quality of the in-data. Several insecurities in the results can be traced back to a lack of base material and by changing one parameter the result of other calibrated parameters would also change. Equifinality could thus be established to be a major issue when performing groundwater modelling. Further studies of relevant data requirements for different model objectives are required.
118

Seepage, stability and pollution transport of an upstream tailing dam with COMSOL.

Gonzales, Valentina, Åberg, Henrietta January 2013 (has links)
In the early years of the 20th century the first tailing dams were constructed, the upstream tailing dam being the first type. Before this the tailings were disposed in the nearest stream or river. This caused legal issues between farmers and the mining companies, which ended the random discharge of the tailings. During the 20th century many tailing dams collapsed raising questions whether the technology is sufficient and safe. The known failures are just a fraction of the actual number since not all failures are documented. If a tailing dam were to break the consequenses could be fatal not only on impact but longterm, affecting many generations to come. This paper analyses an active tailing dam in China using the software COMSOL 3.4. The main aspects are the seepage, stability and pollution transport of the unsaturated upstream tailing dam. The results indicate that the dam at this point in time is stable, based on the aspects studied, the inputdata and models that were created.
119

Thermal Conductivity and Diffusivity Measurement Assessment for Nuclear Materials Raman Thermometry for Uranium Dioxide and Needle Probe for Molten Salts

Hartvigsen, Peter Ward 22 June 2020 (has links)
In the near future, Gen II, III, and IV nuclear reactors will be in operation. UO2 is a common fuel for reactors in each of these generations and molten salts are used as coolant/fuel in Gen IV molten salt reactors. This thesis investigates potential ways to measure thermal conductivity for these materials: Raman thermometry for UO2 and a needle probe for molten salts. Four Raman thermometry techniques are investigated in this thesis: The Two Laser Raman (TLR), Time Differential Domain Raman (TDDR), Frequency Resolved Raman (FRR), and Frequency Domain Raman (FDR). The TLR is a steady state method used with a thin film. The TDDR and FRR are both time domain methods used with thin cantilever samples. The FDR is a frequency domain method used with a thermally thick sample. Monte Carlo like simulations are performed for each technique. In the simulations, the affect introduced uncertainty has on the measurement of thermal conductivity and thermal diffusivity is measured. From the results, it is recommended that the TLR should be used for measuring thermal conductivity and the FRR used for measuring thermal diffusivity. The TDDR and FDR were heavily affected by the uncertainty which resulted in inconsistent measured thermal properties. For measuring the thermal conductivity of molten salt, a needle probe was designed and manufactured to withstand the corrosive environment found in using molten salts. The probe uses modulated joule heating and measures the temperature rise in a thermocouple. The phase delay and temperature amplitude of the thermocouple are used in determining the thermal conductivity. A new thermal quadrupole based analytical solution, which takes into consideration convection and radiation, to the temperature rise of the probe is presented. The analytical solution is verified using a numerical solution found using COMSOL. Preliminary data was obtained with the probe in water.
120

Thermo-Piezo-Electro-Mechanical Simulation of AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) High Electron Mobility Transistor

Stevens, Lorin E. 01 May 2013 (has links)
Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both piezoelectric materials). This piezoelectric effect can be triggered by voltage applied to the device's gate contact and the existence of an HEMT-unique "two-dimensional electron gas" (2DEG) at the GaN-AlGaN interface. COMSOL Multiphysics computer software has been utilized to create a finite element (i.e. piece-by-piece) simulation to visualize both temperature and stress/strain distributions that can occur in the device, by coupling together (i.e. solving simultaneously) the thermal, electrical, structural, and piezoelectric effects inherent in the device. The 2DEG has been modeled not with the typically-used self-consistent quantum physics analytical equations, rather as a combined localized heat source* (thermal) and surface charge density* (electrical) boundary condition. Critical values of stress/strain and their respective locations in the device have been identified. Failure locations have been estimated based on the critical values of stress and strain, and compared with reports in literature. The knowledge of the overall stress/strain distribution has assisted in determining the likely device failure mechanisms and possible mitigation approaches. The contribution and interaction of individual stress mechanisms including piezoelectric effects and thermal expansion caused by device self-heating (i.e. fast-moving electrons causing heat) have been quantified. * Values taken from results of experimental studies in literature

Page generated in 0.109 seconds