1 |
Development of Indium Arsenide Quantum Well Electronic CircuitsBergman, Joshua 09 July 2004 (has links)
This dissertation focuses on the development of integrated circuits that employ InAs quantum well electronic devices. There are two InAs quantum well electronic devices studied in this work, the first being the pseudomorphic InAs/In₀.₅₃Ga₀.₄₇As/AlAs resonant tunneling diode (RTD) grown on an InP substrate, and the second being the InAs/AlSb HEMT. Because of there is no semi-insulating substrate near the InAs lattice constant of 6.06 Å this work develops monolithic and hybrid integration methods to realize integrated circuits. For the case of hybrid RTD circuits, a thin-film integration method was developed to integrate InAs/In₀.₅₃Ga₀.₄₇As/AlAs RTDs to prefabricated CMOS circuits, and this technique was employed to demonstrate a novel RTD-CMOS comparator. To achieve higher speed circuit operation, a next-generation RTD fabrication process was developed to minimize the parasitic capacitance associated with the thin-film hybridization process. This improved fabrication process is detailed and yield and uniformity analysis is included. Similar InP-based tunnel diodes can be integrated with InP-based HEMTs in monolithic RTD-HEMT integrated circuits, and in this work elementary microwave circuit components were characterized that co-integrate InP-based tunnel diodes with HEMTs. In the case of the InAs/AlSb HEMT, the monolithic approach grows the HEMT on a metamorphic buffer on a GaAs substrate. The semiconductor material and process development of the InAs/AlSb HEMT MMIC technology is described. The remarkable microwave and RF noise properties of the InAs/AlSb HEMT were characterized and analyzed, with special attention given to the strong effects of impact ionization in the narrow bandgap InAs channel. Results showed the extent to which impact ionization affects the small-signal gain and noise figure of the HEMT, and that these effects become less prevalent as the frequency of operation increases.
|
2 |
Convertisseurs DC/DC à base de HFETs GaN pour applications spatiales / GaN HFET-based DC/DC converters for space applicationsDelamare, Guillaume 16 November 2015 (has links)
L'amélioration de la compacité et du rendement des convertisseurs à découpage est une problématique centrale en électronique de puissance; elle l'est encore plus à bord des satellites où chaque gramme et chaque watt comptent. Chacun des nombreux émetteurs et récepteurs radiofréquence qui équipent les satellites de télécommunication a besoin d'être alimenté par diverses tensions, converties de façon isolée à partir du bus principal de distribution de puissance. En raison des lourdes contraintes thermiques, de fiabilité et de résistance aux radiations qui pèsent sur les composants électroniques dans les applications spatiales, les degrés de liberté pour améliorer les alimentations sont restreints, en tout cas avec les technologies actuelles de semiconducteurs qualifiés (couteuses et très en retrait des performances de l'état de l'art). La commercialisation assez récente de transistors de puissance en nitrure de gallium (GaN) à canal normalement bloqué, présentant des caractéristiques électriques supérieures à celles des meilleurs MOSFET de puissance en silicium, est prometteuse sur ce point. En effet leur robustesse intrinsèque aux radiations semble permettre leur emploi dans des convertisseurs spatiaux. Le but de ce travail est l'évaluation des apports possibles de cette technologie dans la réalisation d'alimentations DC/DC isolées pour des équipements typiques des charges utiles des satellites de télécommunication. Le fonctionnement à des fréquences de découpage plus élevées avec ces composants plus performants doit, au premier abord, réduire l'encombrement des convertisseurs à rendement égal (voire meilleur) tout en continuant à respecter le cahier des charges spécifique à chaque application. La pertinence de cette hypothèse et l'architecture de mise en œuvre la plus adéquate ont été explorées pour l'alimentation faible puissance d'un récepteur RF, avec réalisation et comparaison de plusieurs maquettes de démonstration. Afin d'aborder des convertisseurs de plus fortes puissances, une étude théorique et expérimentale des pertes par commutation dans les jambes de pont de transistors GaN a été menée. Un programme de calcul de performances a été développé en Python et mis en œuvre pour identifier l'optimum global du dimensionnement d'un convertisseur Dual Active Bridge destiné à l'alimentation d'un amplificateur RF de puissance (250 W DC). Une maquette prototype a été réalisée et a démontré l'intérêt de la topologie et des composants GaN dans cette application, tout en mettant en évidence la prédominance des pertes haute fréquence des composants magnétiques parmi les pertes totales du convertisseur. Ce dernier point s'avère finalement être la principale limitation de l'approche, précieuse pour l'ingénierie, de dimensionnement optimal par le calcul : les modèles actuellement existants d'estimation des pertes dans les éléments magnétiques se révèlent insatisfaisants pour prédire les performances de ce type de convertisseur. / Improving the compactness and efficiency of switching converters is a central issue in power electronics; even more so in satellites where every gram and every watt counts. Each of the many radio-frequency emitters and receivers onboard telecommunications satellites need to be powered by various voltages, converted in an isolated way from the main power distribution bus. Due to the strong thermal, reliability and radiation hardness constraints applying to electronic components in space applications, available degrees of freedom for improvement of power supplies are limited - at least with current qualified semiconductor technologies (which are both expensive and far behind state-of-the-art performance). The recent commercialization of gallium nitride (GaN) normally-off power transistors, having superior electrical characteristics compared to the best silicon power MOSFET, is promising on that regard. Indeed, their intrinsic radiation hardness seems to allow their use in space-grade converters. The aim of this work is the evaluation of how this technology can help improve the design of isolated DC/DC power supplies for typical hardware units of telecommunications satellite payloads. Operation at higher switching frequencies with these better performing components should, in principle, reduce converters' footprint while keeping the same (or better) efficiency level and still obeying each application's specific requirements. The accuracy of this hypothesis as well as the most adequate implementation architecture have been explored for the low power supply of a RF receiver, including realization and comparison of several demonstration boards. In order to approach higher power converters, a theoretical and experiment study of switching losses in GaN transistor bridge legs has been performed. A performance computation software has been developed in Python and used to identify the global optimum of the design of a Dual Active Bridge converter for a power RF amplifier (250 W DC). A prototype board has been built and demonstrated the interest of both the topology and GaN devices in this application, while clearly showing that high-frequency losses in magnetic components dominate total converter loss. This last issue happens to be the main limitation of the approach - precious to the engineer - of optimum design by computation: currently existing models for power loss estimation in magnetic elements are not satisfactory to predict performances of this type of converter.
|
3 |
AlGaN/GaN Dual Channel HFETs and Realization of GaN Devices on different substratesWu, Mo 25 July 2012 (has links)
GaN-based HFETs demonstrate ubiquitous high power and high frequency performance and attract tremendous research efforts. Even though significant advances have been achieved, there still exist some critical issues needed to be investigated and solved. In particular, high defect densities due to inhomogeneous growth and operation under high power conditions bring many unique problems which are not so critical in the conventional Si and GaAs materials systems. In order to reduce the defect density and heat dissipation of GaN-based HFETs, research work on the realization of GaN-based HFETs on bulk GaN substrate has been carried out and the key problems have been identified and solved. Hot phonon scattering is the bottleneck which limits the enhancement of electron velocity in the GaN 2DEG channel. It is found that the plasmon-phonon coupling is the mechanism for converting of hot phonons into high group velocity acoustic phonons. In order to push more electrons into the GaN 2DEG channel in the plasmon-phonon coupling regime and to further reduce the hot phonon lifetime, a novel AlGaN/GaN dual channel HFET structure has been proposed. The growth, fabrication and characterization of such a AlGaN/GaN dual channel HFET structure has been carried out. Conventionally GaN-based light emitting diodes and laser diodes are grown and fabricated using the c-plane III-nitride expitaxy layers. In c-plane III-nitride epi-layers, the polarization-induced electric field introduces spatial separation of electron and hole wave functions in quantum wells (QW)s used LEDs and laser diodes LDs and degrades quantum efficiency. As well, blueshift in the emission wavelength becomes inevitable with increasing injection current unless very thin QWs are employed. The use of nonpolar orientations, namely, m-plane or a-plane GaN, would solve this problem. So far, m-plane GaN has been obtained on LiAlO2 (100), m-plane SiC substrates, and m-plane bulk GaN, which all have limited availability and/or high cost. Silicon substrates are very attractive for the growth of GaN due to their high quality, good thermal conductivity, low cost, availability in large size, and ease with which they can be selectively removed before packaging for better light extraction and heat transfer when needed To realize the low cost and improve the internal quantum efficiency of GaN based light emitting diodes, the process for m-plane GaN growth on Si (112) substrates has been studied and optimized. The continuous m-plane GaN film is successfully grown on Si (112) substrates.
|
4 |
Nouvelles structures de conversion multi-cellulaires à base des transistors GaN pour la conversion DC-DC : applications au conditionnement des énergies renouvelables. / New structures of multi-cellular conversion based on GaN transistors for DC-DC conversion : conditioning in renewable energies applications.Sarrafin ardebili, Farshid 28 March 2017 (has links)
Dans le but de gérer la consommation et ainsi que la production efficace des énergies renouvelables, l’utilisation et augmentation de l’efficacité des systèmes de conversion d’énergie est devenue indispensable. Dans ce contexte, les transistors en nitrure de gallium (GaN HFETs) pour une densité de puissance commutée très importante, offrent des nouvelles possibilités et ils tirent vers le haut la gestion efficace des énergies renouvelables. Toutefois, cette nouvelle possibilité passe par un pilotage efficace des composants et une encapsulation et des interconnexions optimales. Ces travaux de thèse étudient et analyse les avantages et inconvénients d'une nouvelle structure de conversion multi cellulaire et ceux d’un driver spécifique multivoies monolithique et synchronisé pour les composants GaN, appliqué dans ce contexte précis. Ce manuscrit de thèse est composé de quatre chapitres. Après une étude bibliographique, le positionnement du convertisseur DAB (Dual Active Bridge) parmi les autres structures de conversion DC à l’aide d’une nouvelle méthodologie de comparaison (FOM topologique – Figure de Mérite) est présenté dans le premier chapitre. Afin de diminuer les contraintes de conversion d’énergie, une étude est amenée dans le chapitre 2 sur les principaux défis et enjeux d’une solution générique à travers de réalisation d’un réseau de convertisseurs. Le chapitre 3 présente la partie importante d’expérimentation et d’optimisation de la cellule élémentaire à base de convertisseurs DAB des points de vue fonctionnels mais aussi et surtout structurels. L’étude de l’isolation galvanique de la structure de conversion DAB reste l'objectif principal à développer pour démontrer le potentiel de remplacer le transformateur par une isolation capacitive. La conception de la puce de commande dédiée aux nouveaux transistors GaNs, les résultats pratiques des performances sont présentés dans le dernier chapitre. Certaines comparaisons du driver QGD (Quad Gate Driver) avec les autres solutions de transfert d’ordres de commande sont également discutées. La mise en œuvre du circuit de commande dans un convertisseur DAB afin de valider le fonctionnement de QGD est introduite dans les perspectives. / In order to improve the management and the production efficiency in renewable energy, power electronics systems have become important contributors. In this context, gallium nitride transistors (GaN HFETs) provide new opportunities for high power density, high switching speed and they pull up the effective management of renewable energies. However, this new opportunity requires effective gate drivers and optimal packaging and assembly. This thesis will introduce the general approach of a new architecture for multi cellular conversion and a monolithic multichannel and synchronized drive for GaN components, which are applicable in our specific context. This thesis is composed of four chapters. A bibliographic section is presented in first chapter. A new comparative methodology has been developed in this chapter in order to benchmark the DAB (Dual Active Bridge) converter with respect to other DC converters. In the second chapter, a generic solution (converter grid) has been explained in order to reduce the energy conversion constraints. Chapter 3 presents the important parts of the experimentation and the optimization of DAB converter. High frequency transformer replacing by capacitors is the main objective of this section. The design of the Quad Gate Driver (QGD) IC dedicated to GaNs transistors control in H bridge configuration and the results of their performances are presented in the last chapter. Some comparisons of this approach with other signal transfer solutions are also discussed. The implementation of the QGD in a full bridge transistor converter is introduced into the perspective section.
|
5 |
Untersuchungen zu Vanadium-basierten ohmschen Kontakten in AlGaN/GaN-MISHFETsSchmid, Alexander 03 August 2020 (has links)
Bauelemente auf Basis von AlGaN/GaN-Heterostrukturen bieten vielversprechende Eigenschaften für Hochfrequenz- und leistungselektronische Anwendungen. Dazu zählen die hohe Elektronenmobilität im zweidimensionalen Elektronengas (2DEG) und eine hervorragende Durchbruchsfeldstärke. Die effiziente ohmsche Kontaktierung der Source- und Drain-Gebiete von Hetero-Feldeffekttransistoren mit Gate-Dielektrikum (MISHFETs) stellt jedoch eine Herausforderung dar. In dieser Arbeit werden unterschiedliche Kontaktstapel auf Basis von Ti/Al/Ni/Au und V/Al/Ni/Au hinsichtlich ihrer Eignung als ohmsche Kontaktierung verglichen. Mit Hilfe von elektrischen und mikrostrukturellen Methoden werden die Vorgänge bei der Ausbildung des elektrischen Kontakts untersucht. Während der etablierte Ti-haltige Kontaktstapel einen Hochtemperaturschritt bei mindestens 800°C benötig, um einen hinreichend guten Kontaktwiderstand zu erzielen, lässt sich mit der V-basierten Metallisierung eine Reduzierung der notwendigen Temperatur um bis zu 150 K erreichen. Die so optimierten Kontakte werden als Source- und Drain-Metallisierung für MISHFETs genutzt. Es wird gezeigt, dass die Reduzierung der Formierungstemperatur bei V-haltigen Kontakten einen positiven Effekt auf die Eigenschaften der Bauelemente hat. So wird die Schädigung des 2DEGs minimiert und es können Transistoren mit geringerem Leckstrom und höherem An/Aus-Verhältnis des Drain-Stroms hergestellt werden.
|
6 |
Thermo-Piezo-Electro-Mechanical Simulation of AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) High Electron Mobility TransistorStevens, Lorin E. 01 May 2013 (has links)
Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both piezoelectric materials). This piezoelectric effect can be triggered by voltage applied to the device's gate contact and the existence of an HEMT-unique "two-dimensional electron gas" (2DEG) at the GaN-AlGaN interface. COMSOL Multiphysics computer software has been utilized to create a finite element (i.e. piece-by-piece) simulation to visualize both temperature and stress/strain distributions that can occur in the device, by coupling together (i.e. solving simultaneously) the thermal, electrical, structural, and piezoelectric effects inherent in the device. The 2DEG has been modeled not with the typically-used self-consistent quantum physics analytical equations, rather as a combined localized heat source* (thermal) and surface charge density* (electrical) boundary condition. Critical values of stress/strain and their respective locations in the device have been identified. Failure locations have been estimated based on the critical values of stress and strain, and compared with reports in literature. The knowledge of the overall stress/strain distribution has assisted in determining the likely device failure mechanisms and possible mitigation approaches. The contribution and interaction of individual stress mechanisms including piezoelectric effects and thermal expansion caused by device self-heating (i.e. fast-moving electrons causing heat) have been quantified. * Values taken from results of experimental studies in literature
|
7 |
Thermal Transport in III-V Semiconductors and DevicesChristensen, Adam Paul 31 July 2006 (has links)
It is the objective of this work to focus on heat dissipation in gallium nitride based solid-state logic devices as well as optoelectronic devices, a major technical challenge. With a direct band gap that is tunable through alloying between 0.7-3.8 eV, this material provides an enabling technology for power generation, telecommunications, power electronics, and advanced lighting sources. Previously, advances in these areas were limited by the availability of high quality material and growth methods, resulting in high dislocation densities and impurities. Within the last 40 years improvements in epitaxial growth methods such as lateral epitaxial overgrowth (LEO), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), and metal organic chemical vapor deposition (MOCVD), has enabled electron mobilities greater than 1600 cm2V/s, with dislocation densities less than 109/cm2. Increases in device performance with improved materials have now been associated with an increase in power dissipation (>1kW/cm2) that is limiting further development.
In the following work thermophysical material of III-V semiconducting thin films and associated substrates are presented. Numerical modeling coupled with optical (micro-IR imaging and micro-Raman Spectroscopy) methods was utilized in order to study the heat carrier motion and the temperature distribution in an operating device. Results from temperature mapping experiments led to an analysis for design of next generation advancements in electronics packaging.
|
8 |
Electro-thermo-mechanical characterization of stress development in AlGaN/GaN HEMTs under RF operating conditionsJones, Jason Patrick 08 June 2015 (has links)
Gallium nitride (GaN) based high electron mobility transistors (HEMTs) offer numerous benefits for both direct current (DC) and radio frequency (RF) power technology due to their combination of large band gap, high electrical breakdown field, high peak and saturation carrier velocity, and good stability at high temperatures. In particular, AlGaN/GaN heterostructures are of great interest because of the unique conduction channel that develops as a result of the spontaneous and piezoelectric polarization that occurs in these layers. This channel is a vertically confined plane of free carriers that is often called a 2 dimensional electron gas (or 2DEG). Although these devices have shown an improvement in performance over previous heterostructures, reliability issues are a concern because of the high temperatures and electric fields that develop during operation. Therefore, characterizing electrical and thermal profiles within AlGaN/GaN HEMTs is critical for understanding the various factors that contribute to device failures. Little research has been performed to model and characterize these devices under RF bias conditions, and is therefore of great interest. Under pulsed conditions, a single cycle consists of an “on-state” period where power is supplied to the device and self-heating occurs, followed by an “off-state” period where no power is supplied to the device and the device cools. The percentage of a single cycle in which the device is powered is called the duty cycle.
In this work, we present a coupled electro-thermo-mechanical finite-element model for describing the development of temperature, stress, and strain profiles within AlGaN/GaN HEMTs under DC and AC power conditions for various duty cycles. It is found that bias conditions including source-to-drain voltage, source-to-gate voltage, and pulsing frequency directly contribute to the electro-thermo-mechanical response of the device, which is known to effect device performance and reliability. The model is validated by comparing numerical simulations to experimental electrical curves (Ids-Vds) and experimental strain measurements performed using scanning joule expansion microscopy (SJEM). In addition, we show how the operating conditions (bias applied and AC duty cycle) impact the thermal profiles of the device and outline how the stress in the device changes through a pulsed cycle due to the changing thermal and electrical profiles. Qualitatively, the numerical model has good agreement across a broad range of bias conditions, further validating the model as a tool to better understand device performance and reliability.
|
9 |
Thermo-Piezo-Electro-Mechanical Simulation of AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) High Electron Mobility TransistorStevens, Lorin E. 01 May 2013 (has links)
Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both piezoelectric materials). This piezoelectric effect can be triggered by voltage applied to the device's gate contact and the existence of an HEMT-unique "two-dimensional electron gas" (2DEG) at the GaN-AlGaN interface. COMSOL Multiphysics computer software has been utilized to create a finite element (i.e. piece-by-piece) simulation to visualize both temperature and stress/strain distributions that can occur in the device, by coupling together (i.e. solving simultaneously) the thermal, electrical, structural, and piezoelectric effects inherent in the device. The 2DEG has been modeled not with the typically-used self-consistent quantum physics analytical equations, rather as a combined localized heat source* (thermal) and surface charge density* (electrical) boundary condition. Critical values of stress/strain and their respective locations in the device have been identified. Failure locations have been estimated based on the critical values of stress and strain, and compared with reports in literature. The knowledge of the overall stress/strain distribution has assisted in determining the likely device failure mechanisms and possible mitigation approaches. The contribution and interaction of individual stress mechanisms including piezoelectric effects and thermal expansion caused by device self-heating (i.e. fast-moving electrons causing heat) have been quantified. * Values taken from results of experimental studies in literature
|
10 |
Electron – phonon interaction in multiple channel GaN based HFETs: Heat management optimizationFerreyra, Romualdo A 01 January 2014 (has links)
New power applications for managing increasingly higher power levels require that more heat be removed from the power transistor channel. Conventional treatments for heat dissipation do not take into account the conversion of excess electron energy into longitudinal optical (LO) phonons, whose associated heat is stored in the channel unless such LO phonons decay into longitudinal acoustic (LA) phonons via a Ridley path. A two dimensional electron gas (2DEG) density of ~5×1012cm-2 in the channel results in a strong plasmon–LO phonon coupling (resonance) and a minimum LO phonon lifetime is experimentally observed, implying fast heat removal from the channel. Therefore, it is desirable to shift the resonance condition to higher 2DEG densities, and thereby higher power levels. The more convenient way to attain the latter is by widening the 2DEG density profile via heterostructure engineering, i.e. by using multiple channel heterostructures. A single channel heterostructure (GaN/AlN/AlGaN), a basic heterostructure used to obtain a 2DEG, exhibits a resonance condition at low 2DEG densities (~0.65×1012 cm-2). Successful widening of the 2DEG density xv profile was predicted by simulation results for two types of multiple (Al)GaN channel heterostructures, i.e. coupled channel GaN/AlN/GaN/AlN/AlGaN and dual channel GaN/AlGaN/AlN/AlGaN. Because of a reduction of carrier confinement, it is experimentally observed that control of the channel is moderate in the case of dual channel heterostructures. On the other hand, carrier confinement provides a better control of the channel in coupled channel heterostructures. Furthermore, unlike in a dual channel heterostructure, alloy scattering does not affect carrier transport properties, which results in a higher cut-off frequency. It was found experimentally that the coupled channel heterostructure successfully reaches resonance condition at a 2DEG density that is 23% higher than in a single channel heterostructure. Multiple channel heterostructures therefore provide a convenient way to shift the plasmon-LO phonon resonance to higher 2DEG densities. However, in our grown heterostructures, high power levels under optimal channel working conditions and minimum heat accumulation, all desirable benefits for the development of high power transistors, were only observed in coupled channel heterostructures.
|
Page generated in 0.0271 seconds