• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal Conductivity and Diffusivity Measurement Assessment for Nuclear Materials Raman Thermometry for Uranium Dioxide and Needle Probe for Molten Salts

Hartvigsen, Peter Ward 22 June 2020 (has links)
In the near future, Gen II, III, and IV nuclear reactors will be in operation. UO2 is a common fuel for reactors in each of these generations and molten salts are used as coolant/fuel in Gen IV molten salt reactors. This thesis investigates potential ways to measure thermal conductivity for these materials: Raman thermometry for UO2 and a needle probe for molten salts. Four Raman thermometry techniques are investigated in this thesis: The Two Laser Raman (TLR), Time Differential Domain Raman (TDDR), Frequency Resolved Raman (FRR), and Frequency Domain Raman (FDR). The TLR is a steady state method used with a thin film. The TDDR and FRR are both time domain methods used with thin cantilever samples. The FDR is a frequency domain method used with a thermally thick sample. Monte Carlo like simulations are performed for each technique. In the simulations, the affect introduced uncertainty has on the measurement of thermal conductivity and thermal diffusivity is measured. From the results, it is recommended that the TLR should be used for measuring thermal conductivity and the FRR used for measuring thermal diffusivity. The TDDR and FDR were heavily affected by the uncertainty which resulted in inconsistent measured thermal properties. For measuring the thermal conductivity of molten salt, a needle probe was designed and manufactured to withstand the corrosive environment found in using molten salts. The probe uses modulated joule heating and measures the temperature rise in a thermocouple. The phase delay and temperature amplitude of the thermocouple are used in determining the thermal conductivity. A new thermal quadrupole based analytical solution, which takes into consideration convection and radiation, to the temperature rise of the probe is presented. The analytical solution is verified using a numerical solution found using COMSOL. Preliminary data was obtained with the probe in water.
2

Modélisation des échanges thermiques et radiatifs en environnement urbain à très haute résolution spatiale : aide à l'interprétation des mesures par télédétection infrarouge / Modelling of radiative heat exchange in urban environments with very high spatial resolution : assistance in the interpretation of measurements by infrared remote sensing

Lalanne, Nicolas 21 July 2015 (has links)
La consommation énergétique en France a pour origine principale le secteur résidentiel et tertiaire. En environnement urbain, l’habitat est encore principalement ancien, avec des déperditions importantes. L’amélioration des performances énergétiques passe par la quantification des pertes, basée sur une méthode globale de mesure par caméra infrarouge à haute résolution spatiale.L’interprétation des images obtenues nécessite une description des termes radiatifs composant le signal, pour cela un simulateur original est mis au point. A partir d’une scène tridimensionnelle maillée, le champ de température est calculé pour les parois 1D et pour les ponts thermiques 2D, par le programme thermique développé à cet effet, SUSHI qui s’appuie sur un pré-calcul d’éclairement solaire et un pré-calcul de réponse indicielle 2D. Le signal du capteur infrarouge est alors modélisé en adaptant le code radiatif MOHICANS.Cette chaîne logicielle a l’originalité de proposer une fusion efficace des simulations de la réponse dynamique en température et en luminance de zones présentant un transfert 1Dà travers la paroi et de zones présentant un transfert 2D.La mise en œuvre de la campagne expérimentale BATIR a permis de mesurer le comportement thermique d’une façade de bâtiment et de son environnement radiato-convectif. Une validation ponctuelle des températures calculées par SUSHI a été réalisée par confrontation à une mesure par thermocouple. Des caméras infrarouges ont été mises en œuvre afin de collecter la luminance issue de la façade étudiée en bande II et III. Les luminances calculées par MOHICANS sont comparées à ces acquisitions, et valident la chaîne logicielle à ce niveau. / The main origin of the energy consumption in France is the residential and commercial sector. In urban environment, housing is mostly old, which means high heat losses. The improvement of energy performances requires the quantification of heat losses. This quantification may be based on a global measurement by an infrared camera with high spatial resolution.The infrared image interpretation requires a description of the radiative terms that make up the signal. For that purpose, a novel simulator is developed. The temperature field is calculated from a meshed three-dimensional scene composed of 1D walls and 2D thermal bridges. This operation is realized by the developed thermal software SUSHI, which is based on solar irradiance pre-computation and on 2D unitary response pre-computation. The software uses as input environmental data measured in the field. The infrared sensor signal is then modelled by adapting the radiative program MOHICANS. This software chain has the distinct advantage of an efficient fusion of dynamic response simulations of temperature and radiance, for areas with unidirectional and 2D heat transfer.The experimental campaign BATIR was set-up for measuring the thermal behavior of a building façade and its convective and radiative environment. A local validation of temperature calculation by SUSHI was realized through a comparison with thermocouple measurement results. Infrared cameras were operated in order to collect the radiance coming from the analyzed façade in band II and III. The radiances calculated by MOHICANS were compared with these acquisitions in order to validate the software chain at this level.
3

Identification de propriétés thermiques et spectroscopie térahertz de nanostructures par thermoréflectance pompe-sonde asynchrone : application à l'étude du transport des phonons dans les super-réseaux

Pernot, Gilles 26 January 2010 (has links)
Le travail de cette thèse porte sur l’identification et le contrôle des propriétés thermiques et acoustiques de nanostructures à fort potentiel thermoélectrique appelés « Super-réseaux ». Le manuscrit comporte trois parties : La première partie est consacrée à la description théorique des phénomènes de transport thermique par diffusion dans les solides isolants et semi-conducteurs. Nous abordons tout d’abord le point de vue atomique, puis macroscopique en utilisant la méthode des quadripôles thermiques. La fin du chapitre est consacrée aux propriétés acoustiques et thermiques des super-réseaux. La deuxième partie présente et compare les méthodes de Thermoreflectance laser synchrone et asynchrone utilisées pour extraire les propriétés thermiques de couches minces et de super-réseaux. Nous montrons que dans le cas synchrone, les signaux sont soumis à des artefacts modifiant leur allure et rendant difficile l’identification des propriétés thermiques. Dans le cas asynchrone, la suppression de tous les éléments mobiles permet d’obtenir un signal sans artéfact. Nous traitons ensuite des fonctions de sensibilité au modèle développé puis nous validons la méthode d’identification en estimant la conductivité thermique d’un film mince de SiO2. La troisième partie présente les résultats des identifications de la conductivité thermique de différents super-réseaux de SiGe. Nous montrons que les résistances d’interface jouent un rôle majeur dans l’explication de la réduction de la conductivité thermique. Nous étudions également des super-réseaux contenant des îlots de Ge, nous montrons que de telles structures permettent d’obtenir non seulement des conductivités proches de celles des matériaux amorphes, mais le comportement linéaire de la conductivité en fonction de la période montre qu’il est possible de contrôler cette dernière. Enfin, nous utilisons la Thermoreflectance pour réaliser une étude de spectroscopie THz de phonons cohérents dans les super-réseaux et nous mettons en évidence la sélectivité spectrale des ces nanostructures. / The work presented in this thesis deals with identification and control of the thermal and acoustic properties of high thermoelectric potential nanostructures called “superlattices”. This thesis is divided in three parts: The first part gives a theoretical description of thermal diffusion in insulating and semiconducting materials. We first broach the atomic description then the macroscopic view using the Thermal Quadrupole model. The end of this chapter deals with acoustic and thermal properties specific to superlattices. The second part describes and compares synchronous and asynchronous thermoreflectance techniques used to extract thermal properties of thin films and superlattices. We find that for the synchronous case signals are subject to artifacts which confound parameter estimations. For the asynchronous case, we find that lack of a mechanical translation stage removes these artifacts. We then investigate the sensitivity functions, and finally validate our identification method by estimation of the thermal conductivity of a SiO2 thin film. The third part presents the results of thermal parameter identification in SiGe superlattices. We show that thermal interfaces play a major role to in the overall thermal conductivity. We also study superlattices with Ge nanodots and show that for such structures we are able to obtain thermal conductivity values near the amorphous values. Moreover, the linear behavior of the thermal conductivity with period thickness shows that it is possible to control this value. Finally, we use Thermoreflectance to perform THz coherent phonon spectroscopy of superlattices, revealing the spectral selectivity of these nanostructures.

Page generated in 0.1278 seconds