• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 612
  • 390
  • 129
  • 74
  • 66
  • 63
  • 12
  • 10
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 1684
  • 607
  • 317
  • 261
  • 223
  • 210
  • 208
  • 206
  • 204
  • 155
  • 146
  • 138
  • 130
  • 119
  • 117
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

[pt] ESTUDO EXPERIMENTAL DA INFLUÊNCIA DO COBRIMENTO NA INTERAÇÃO AÇO-CONCRETO EM ELEMENTOS SUJEITOS À COMPRESSÃO / [en] EXPERIMENTAL STUDY ON THE INFLUENCE OF CONCRETE COVER ON THE INTERACTION BETWEEN STEEL BARS AND CONCRETE IN ELEMENTS SUBJECTED TO COMPRESSION

WALTER EDGLEY DE OLIVEIRA 02 March 2009 (has links)
[pt] O presente trabalho trata da influência do cobrimento da armadura longitudinal sobre a resistência de aderência em regiões de emenda por traspasse de elementos de concreto armado comprimidos. Neste estudo foram ensaiados dezoito pilares de concreto armado com seção transversal de 200 mm x 150 mm e comprimento de 1100 mm, com armadura longitudinal composta de barras de aço CA-50 com diâmetro nominal de 12,5 mm e estribos de 5 mm. O arranjo da armadura longitudinal definiu três séries de pilares, sendo a Série 1 composta por seis pilares com a armadura longitudinal contínua, e as Séries 2 e 3 cada uma composta por seis pilares com a armadura longitudinal, tendo uma emenda por traspasse localizada na região da metade da altura do pilar de 470 cm e 235 mm de comprimento, respectivamente. Os ensaios consistiram na aplicação de uma força de compressão com uma excentricidade de 20 mm, sendo tal excentricidade aplicada apenas na direção da menor dimensão da seção transversal. Para os seis pilares de cada série o cobrimento da armadura longitudinal variou de 25 mm até que a metade do diâmetro da barra longitudinal ficasse exposta. Os resultados obtidos indicam que a influência do cobrimento sobre a capacidade do pilar resistir às solicitações torna-se visível quando a relação da espessura do cobrimento c e do diâmetro da barra fi é inferior a 0,4. Para pilares com barras emendadas por traspasse e com armadura exposta até a metade de seu diâmetro, a aderência na zona da emenda foi substancialmente afetada, provocando a ruptura do pilar sob forças inferiores às alcançadas em pilares com cobrimento adequado. / [en] The present work describes the influence of the concrete cover of the longitudinal reinforcement on the bond strength along the overlapping splice zones of compressed elements. Tests have been carried out on eighteen reinforced concrete columns, with cross section of 200 mm x 150 mm and 1100 mm of length. The longitudinal reinforcement consisted of CA-50 steel bars with nominal diameter of 12,5 mm and stirrups of 5 mm. Three series of columns (Serie 1, Serie 2 and Serie 3) were defined according to the arrangements of the longitudinal reinforcement: Series 1 composed by six columns with continuous longitudinal reinforcement; Series 2 and 3 composed by six columns each, presenting an overlapping splice of 470 mm and 235 mm of lenght, respectively. The columns were submited to a load apllied with an eccentricity of 20 mm in the direction of the smallest dimension of the cross section. In each series, the concrete cover varied from 25 mm to a value corresponding to the situation in which half of the diameter of the longitudinal bar was exposed. The results showed that the influence of the concrete cover on the column strength becomes relevant when the ratio c/ Ø of the cover thickness c to the bar diameter Ø is less than 0,4. For columns with overlapping splice and reinforcement exposed up to the half of diameter, the bond along the overlapping zone has been substancially affected, resulting in the column failure at lower loads when compared to columns with proper value of concrete cover.
292

THE USE OF REMOTE SENSING AND GEOGRAPHICAL INFORMATION SYSTEMS TO CREATE LAND USE AND LAND COVER MAPS AND TO DETERMINE THE CHANGES IN THE LAND USE AND LAND COVER OVER A TEN YEAR PERIOD

Johnson, Adam Bradford 06 August 2005 (has links)
Construction of land use and land cover (LULC) maps was accomplished through the use of remote sensing and GIS. Remote sensing and GIS were used to classify 1990 Landsat 5 and 2000 Landsat 7 Mississippi Gulf Coast imagery into six LULC classes: urban, barren, forested vegetation, non-forested vegetation, marsh, and water. An accuracy assessment was performed on the 2000 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the ten year span of time. The paper concludes that remote sensing and GIS can be used to create LULC maps. It also notes that the maps generated can be used to delineate the changes that take place over time.
293

Diapause biology, dispersal capabilities and insecticide use for Lygus lineolaris in Mid-Atlantic cotton systems

Schepis, John Philip 03 June 2024 (has links)
Cotton (Gossypium hirsutum L.), is cultivated in the United States, primarily in regions characterized by long, hot summers to optimize plant growth. Virginia is the northernmost state where cotton is grown, with approximately 84,000 acres annually. The unique challenges of cultivating cotton in Virginia stems from its relatively short season due to its geographical location, lack of large contiguous acreage, and distinctive issues with pests. A significant pest of this region is the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), which emerged as a major threat to mid-Atlantic cotton during the late 2010s. L. lineolaris utilize a variety of wild and cultivated hosts to survive the winter months. The overwintering success and distribution of diapause survival L. lineolaris was measured on cover crops and weeds common in the Mid-Atlantic. Densities varied between weed and cultivated hosts, with L. lineolaris exhibiting increased survival in legumes compared to grains. Carbohydrate, lipid and protein levels were measured within diapausing and non-diapausing L. lineolaris specimens. Overwintering specimens usually had elevated level of carbohydrates and lipids, while containing decreased concentrations of protein. Nutrient quantification provided an effective tool in selecting for diapause status in L. lineolaris. Through the results from this study, an alternative method to dissection for determining diapause status in L. lineolaris has been identified. In the spring, movement of L. lineolaris throughout the landscape is highly dependent on host senesce. Flight analysis, behavioral assays and nutritional quantification assays on L. lineolaris populations from different weed hosts were performed to assess the flight capacity of specimens fed from different hosts. While weed hosts type provided populations with differing internal nutrient levels, sustained flight was not different between populations. When dispersal of L. lineolaris into cotton occurs, insecticide treatments following scouting are often necessary to prevent economic damage to the plant. Insecticide experiments were conducted aiming to assess the impact of different active ingredients on L. lineolaris, secondary pests, and natural enemy populations. Findings indicated that insecticides used to control L. lineolaris were successful at lowering pest populations and acephate was found to impact natural enemy populations. Plots applied with acephate experienced secondary pest outbreaks, highlighting the crucial role of natural enemies. / Doctor of Philosophy / Cotton is cultivated throughout the southern United States, extending up the east coast and into North Carolina and Virginia. Virginia poses unique challenges for cotton growers due to specific pest issues and need for region-specific research. The tarnished plant bug is a key pest of mid-summer cotton across this region. Overwintering studies were conducted to investigate host preferences on cover crop and weed hosts, as well as diapause survival and termination timing on cover crops. These studies revealed that hairy vetch and deadnettle species may harbor larger populations compared to other weed hosts, and that cover crops such as hairy vetch and crimson clove led to greater overwintering survival compared to grains. During diapause, metabolic changes occur that can lead to increased fat body to aid in overwintering survival. Diapausing and non-diapausing tarnished plant bugs were used in assays to quantify differences in the nutrients commonly found in this fat body. This study successfully found differences in carbohydrates, lipids and proteins levels between the diapausing and non-diapausing populations. This may allow for the identification of reproductive status of tarnished plant bugs based on nutrient levels. Flight capacity, activity levels and nutrient levels in tarnished plant bug populations taken from spring and summer weed hosts were investigated, with the objective to understand the ability of these populations to transition to cotton in the mid-summer. There were some indicators that flight initiation may be influenced by weed host, while all populations had similar flight potentials. Once in cotton, tarnished plant bugs are primarily treated with chemical insecticides which may produce unknown consequences to the system as a whole. Experiments were conducted to assess the impact of insecticides on non-target species within cotton were conducted in the field. Certain insecticides were identified to be harmful to non-target and potentially beneficial insect species, which contributed to outbreaks of other secondary pest species.
294

Evaluation of anaerobic soil disinfestation using brewers spent grain and yeast inoculation in  annual hill plasticulture strawberry production

Liu, Danyang 14 April 2021 (has links)
Anaerobic soil disinfestation (ASD) is a promising alternative to chemical fumigation to control soil-borne plant pathogens and weeds. This research focused on evaluating several locally available carbon sources for ASD on weed control, evaluating the performance of brewers' spent grain (a promising carbon source) under field conditions, and evaluating whether yeast addition enhanced the effectiveness of ASD treatments. A series of greenhouse trials were conducted at the Southern Piedmont AREC (Agricultural Research and Extension Center). The greenhouse trials were conducted in PVC tubes, 20 cm tall and 15 cm in diameter. The first set of trials evaluated ASD conducted over 21-day periods of ASD using locally available carbon sources. The carbon sources included brewer`s spent grain, buckwheat (Fagopyrum esculentum), cowpea (Vigna unguiculata), paper mulch, peanut (Arachis hypogaea) shells, rice bran, sorghum-sudangrass (Sorghum drummondii), and waste coffee grounds applied at 4 mg of C/g of soil. The targeted weed species included common chickweed (Stellaria media (L.) Vill.), redroot pigweed (Amaranthus retroflexus L.), white clover (Trifolium repens L.), and yellow nutsedge (Cyperus esculentus L.). All ASD treatments significantly reduced weed viability compared to the non-treated control. The yeast amendments enhanced weed control over ASD without yeast. The second set of greenhouse trials was focused on ASD using brewer`s spent grain, and on evaluating ASD at the half and one-third carbon dose rates. The target pests were the same weed species in the first set of trials, and Pythium irregulare was added as an additional target pest. This set of trials indicated yeast enhanced addition the effect of BSG in ASD on both weeds and P. irregulare, indicating the potential to reduce carbon input necessary for effective ASD. A follow-up, two seasons, open-field trial conducted over two growing seasons at the Hampton Roads AREC focused on understanding the effects of ASD on weed density and strawberry fruit yield and fruit quality in annual hill strawberry production. The treatments included ASD at standard or half carbon dose rates, with or without yeast. Fumigation (80% chloropicrin + 20% 1,3-dichloropropene) and non-treated plots were used as control groups. Weed suppression with ASD was consistent for most of the broadleaf weed species, and total weed counts were significantly reduced compared to non-treated controls. Yield from ASD with yeast was higher than ASD without yeast and non-treated control in one growing season, while the increase in yield did not occur in another growing season. Yeast may have potentially enhanced the yield effects of ASD but lacked consistency. Yeast may have the potential to enhance ASD effectiveness. / Doctor of Philosophy / Strawberry is a high-value crop known for its brightly colored, sweet tasting, juicy and fleshy fruit that possesses a unique aroma. The southern region is the second large region of strawberry production in the United States. Strawberry is susceptible to soil-borne pests, including weeds and diseases. Preplant control of soil-borne diseases and weeds is important for strawberry production. Early season weeds can compete with newly transplanted strawberry plugs for nutrients, light, and other resources. However, currently, the limited options of pre-plant chemical fumigants and herbicides available in strawberry plasticulture make weed control a challenge in strawberry production. Anaerobic soil disinfestation (ASD) may be an effective alternative to preplant chemical fumigation. Anaerobic soil disinfestation involves three steps- applying carbon sources to the soil, covering the bed with black tarp, and watering the soil to maintain certain soil moisture to field capacity generally for 21 days. However, there are only a few studies on weed control using ASD in the southern region; locally available carbon sources also need to be evaluated. Thus, this study focused on evaluating several locally available carbon sources (cover crops, brewer`s spent grain, used coffee ground, paper mulch, peanut shell) for ASD to control troublesome weeds (common chickweed, redroot pigweed, white clover, yellow nutsedge). This study also explored a new method that involves mixing distiller's yeast with solid carbon sources in order to enhance the ASD weed control effect. Additionally, this study evaluated the effect of ASD using reduced carbon inputs, potentially reducing the total cost of ASD by reducing the carbon input. A series of greenhouse studies were conducted at the Southern Piedmont Agricultural Research and Extension Center (AREC), Blackstone, VA, with a follow-up field study done at the Hampton Roads AREC. The greenhouse trials evaluated carbon sources including brewer`s spent grain, buckwheat, cowpea, paper mulch, peanut shells, rice bran, sorghum-sudangrass, and waste coffee grounds. These greenhouse experiments were conducted in containers made from PVC tubes, and strawberry plants were not involved. The main objective of the greenhouse trial was to test the suppression of four troublesome weeds, including common chickweed, redroot pigweed, yellow nutsedge, and white clover. The most effective treatments in the greenhouse studies were further investigated in the field trial. The brewer`s spent grain was again used in the field trial, and treatments included ASD using a full or half dose of brewer's spent grain, with or without yeast. We evaluated the effects of these treatments on weed control, plant crop growth, and crop yields. Fruit quality factors, including fruit firmness, sweetness, and size, were also evaluated. In summary, all of the carbon sources evaluated provide similar weed control. Adding yeast showed potential to enhance the effect of ASD using brewer`s spent grain. Adding yeast also increased the effectiveness of the half-rate of the carbon source, showing the potential for effective pre-plant pest control for strawberry using ASD treatments with significantly reduced C dose rates.
295

Understanding the Role of Vegetation Dynamics and Anthropogenic induced Changes on the Terrestrial Water Cycle

Valayamkunnath, Prasanth 03 April 2019 (has links)
The land surface and atmosphere interact through complex feedback loops that link energy and water cycles. Effectively characterizing these linkages is critical to modeling weather and climate extremes accurately. Seasonal variability in vegetation growth and human-driven land cover changes (LCC) can alter the biophysical properties of the land surface, which can in turn influence the water cycle. We quantified the impacts of seasonal variability in vegetation growth on land surface energy and water balances using ecosystem-scale eddy covariance and large aperture scintillometer observations. Our results indicated that the monthly precipitation and seasonal vegetation characteristics such as leaf area index, root length, and stomatal resistance are the main factors influencing ecosystem land surface energy and water balances when soil moisture and available energy are not limited. Using a regional-scale climate model, we examined the effect of LCC and irrigation on summer water cycle characteristics. Changes in biophysical properties due to LCC reducing the evapotranspiration, atmospheric moisture, and summer precipitation over the contiguous United States (CONUS). The combined effects of LCC and irrigation indicated a significant drying over the CONUS, with increased duration and decreased intensity of dry spells, and reduced duration, frequency, and intensity of wet spells. Irrigated cropland areas will become drier due to the added effect of low-precipitation wet spells and long periods (3-4% increase) of dry days, whereas rainfed croplands are characterized by intense (1-5% increase), short-duration wet spells and long periods of dry days. An analysis based on future climate change projections indicated that 3–4 °C of warming and an intensified water cycle will occur over the CONUS by the end of the 21st century. The results of this study highlighted the importance of the accurate representation of seasonal vegetation changes and LCC while forecasting present and future climate. / Doctor of Philosophy / The land surface and atmosphere interact through complex feedback loops that link energy and water cycles. Effectively characterizing these linkages is critical to accurately model weather and climate extremes. We quantified the influence of human-driven land cover change (LCC), in this case, LCC associated with irrigated agriculture, and seasonal vegetation growth on the water cycle using a regional climate model and ecosystem-level observations. Our results indicated that monthly precipitation and seasonal vegetation growth are the main factors influencing land surface energy and water balances when soil moisture and solar energy are not limited. Our results showed that irrigation-related LCC reduced summer precipitation over the contiguous United States (CONUS), with an increased number of dry days (days with less than 1 mm precipitation) and reduced hourly, daily, and summer precipitation totals. Irrigated cropland areas are becoming drier due to the combined effects of low precipitation and long dry days, whereas rainfed croplands are characterized by intense short-duration precipitation and long dry days. Climate change analyses indicate that 3–4 °C of warming and an intensified water cycle will occur over the CONUS by the end of the 21st century. The results of this study highlight the importance of the accurate representation of LCC while forecasting future climate.
296

Land Cover Influences on Stream Nitrogen Dynamics During Storms

Stewart, Rebecca M. 06 August 2012 (has links)
Previous studies on the effects of land cover influence on stream nitrogen have focused on base flow conditions or were conducted specifically within urbanized or primarily agricultural watersheds. While these studies have shown relationships between land cover and nitrogen, this relationship and the scale of influence could change during storms. The purpose of my study was to understand how land cover influences nitrogen in streams during storms. This was address using nine watersheds within the Little Tennessee Basin in North Carolina. While this basin is primarily forested, the nine watersheds have mixed agricultural, built, and forest land cover. Land cover influences were addressed through nitrogen concentration/discharge patterns, nitrogen concentration relationship to land cover, and comparison of storm and base flow nitrogen concentrations over time. Weekly base flow samples and samples from six storm were collected in 2010-2011. Total dissolved nitrogen (TDN), nitrate (NO??), dissolved organic nitrogen (DON), and ammonium (NH?⁺) concentrations were compared among sites. During most storms, DON peaked before the peak of the discharge while NO?? peaked after the peak of the storm. This suggest that DON could be coming from a near stream source or surface runoff while NO?? could be from longer pathways such as subsurface flow or from sources further away on the watershed. NO?? concentration varied among sites, while DON concentration varied more between base flow and storm samples. Examining the different landscape scales from 200-m local corridor, 200-m stream corridor, and entire watershed, watershed land cover was the best predictor for all the nitrogen concentrations. Agricultural and built combined best predicted TDN and NO??, while agricultural land cover was a better predictor of DON. For storms, nitrogen concentrations did not show seasonal patterns but was more related to discharge. Nitrogen concentration increased with discharge during storms and the more intense and longer storms had higher TDN and NO?? concentrations. However, conflicting seasonal trends were seen in monthly base flow. The more forested watersheds had high NO?? during the summer and low NO?? in the winter. For sites with higher NO??, the seasonality was reversed, with higher winter NO?? concentration. The least forested site had relatively constant nitrogen through the year at base flow and concentration decreased for most storms. Further studies on storms and nitrogen transport are needed to understand better the seasonal patterns of nitrogen input during storms. / Master of Science
297

Simulating urban growth for Baltimore-Washington metropolitan area by coupling SLEUTH model and population projection

Zhao, Suwen 18 June 2015 (has links)
This study used two modelling approaches to predict future urban landscape for the Baltimore-Washington metropolitan areas. In the first approach, we implemented traditional SLEUTH urban simulation model by using publicly available and locally-developed land cover and transportation data. Historical land cover data from 1996, 2001, 2006, and 2011 were used to calibrate SLEUTH model and predict urban growth from 2011 to 2070. SLEUTH model achieved 94.9% of overall accuracy for a validation year of 2014. For the second modelling approach, we predicted future county-level population (e.g., 2050) using historical population data and time-series forecasting. We then used future population projection of 2050, aided by strong population-imperviousness statistical relationship (R2, 0.78-0.86), to predict total impervious surface area for each county. These population-predicted total impervious surface areas were compared to SLEUTH model output, at the county-aggregated spatial scale. For most counties, SLEUTH generated substantially higher number of impervious pixels. An annual urban growth rate of 6.24% for SLEUTH model was much higher than the population-based approach (1.33%), suggesting a large discrepancy between these two modelling approaches. The SLEUTH simulation model, although achieved high accuracy for 2014 validation, may have over-predicted urban growth for our study area. For population-predicted impervious surface area, we further developed a lookup table approach to integrate SLEUTH out and generated spatially explicit urban map for 2050. This lookup table approach has high potential to integrate population-predicted and SLEUTH-predicted urban landscape, especially when future population can be predicted with reasonable accuracy. / Master of Science
298

Groundcover, rootstock and root restriction effects on vegetative growth, crop yield components, and fruit composition of Cabernet Sauvignon

Hatch, Tremain Archer 09 March 2010 (has links)
Wine vineyards in humid environments like the mid-Atlantic United States are characterized by vines that develop too much vegetative growth for optimum quality wine production. Cover crops, rootstocks and rootzone restriction were evaluated for their effect on vegetative and reproductive growth on Cabernet Sauvignon. Treatments were arranged in a strip-split-split plot arrangement with under-trellis cover crops (UTCC) compared to row-middle only cover crop combined with 1-m weed-free strips in the vine row as main plots. Rootstocks riparia Gloire, 420-A, and 101-14 were sub-plots, while sub-sub-plots comprised two treatments: vines were either planted in root-restrictive (RR), fabric bags (0.016 m3) at vineyard establishment (2006), or were planted without root restriction. All three factors were effective in suppressing vegetative development as measured by rate and extent of shoot growth, lateral shoot development, trunk circumference, and dormant pruning weights. Canopies of vines with UTCC and RR had reduced leaf layer values by approximately 21% and 23% compared to conventional controls. The principal effect of the UTCC and the RR treatments was a sustained reduction in stem (xylem) water potential. UTCC and RR caused significant 7 and 10% reductions in berry weight, compared to their conventional controls. Berry weights of vines grafted to riparia were greater than those of vines grafted to other rootstocks. Wine made from UTCC and RR treatments increased red wine color compared to herbicide UTGC and NRR, respectively. This study identified treatments that improve vine balance while simultaneously improving grape composition and potential wine quality. / Master of Science
299

Evaluation of Cover Crops, Conservation Tillage, and Nitrogen Management in Cotton Production in Southeastern Virginia

McClanahan, Sarah Jane 10 June 2019 (has links)
The response of upland cotton (Gossypium hirsutum L.) to legume and small grain cover crop establishment, in-season nitrogen (N) rate, and fertilizer N placement was investigated in two experiments located in coastal plain Virginia and North Carolina. The first experiment examined 1) soil compaction and cotton yield response to strip-tillage compared to no-tillage with a precision planted tillage radish and 2) the influence of legume mix, rye, and legume mix/rye combination cover crops with four in-season nitrogen (N) rates applied to cotton on cover crop biomass, cover crop nutrient uptake, soil compaction, soil N cycling, petiole nitrate-N (NO3-N) during the first week of bloom, cotton lint yield, and fiber quality parameters over two years. Legume mix cover crops resulted in greater N uptake, soil NO3-N during the growing season, and lint yields compared to LMR, rye, and fallow treatments over both study years. Soil compaction and lint yields were not significantly different between strip-tilled and no-till with tillage radish treatments in either year. Relative lint yields after LM were maximized at 93% relative yield with 110 kg N ha-1 applied in-season while relative lint yields for cotton following LM with 0 kg N ha-1 applied reached 75%, measuring at least 9% higher than cotton following other cover crop treatments. The second experiment investigated the effect of five N rates (0, 45, 90, 135, and 180 kg N ha-1) and three placement methods (broadcast, surface banded, and injected) on lint yield, petiole nitrate-N (NO3-N), lint percent turnout, and fiber quality parameters. Nitrogen rate and placement had a significant effect on lint yield but only N rate affected petiole NO3-N concentration. It was estimated that injecting fertilizer N requires an N rate of 133 kg N ha-1 to achieve 95% relative yield while surface banded fertilizer N required a rate of 128 kg N ha-1 to produce 90% relative yield. A critical petiole NO3-N concentration threshold of 5,600 mg NO3-N kg-1 was calculated to reach 92% relative yield. Other agronomic management practices such as cover crop termination timing, cover crop species blends, and number of fertilizer N applications are of interest in order to develop better recommendations and promote conservation agricultural practices in coastal plain Virginia and North Carolina. / Master of Science / Upland cotton (Gossypium hirsutum L.) response to diverse species cover crop mixes, conservation tillage method, fertilizer N rate, and fertilizer N placement at side-dress was measured in two field studies conducted on the coastal plain soil in Virginia and North Carolina from 2016-2018. The objectives of the following research were to 1) examine the influence of two conservation tillage practices and four cover crop mixes on cover crop biomass production, soil compaction, cover crop nutrient uptake, soil N cycling, petiole nitrate (NO3-N) and cotton lint yield and 2) measure cotton performance in response to five N rate and three placement application methods. Legume mix (LM) cover crops contained more N in biomass, resulting in higher soil NO3-N during the growing season and higher lint yields at harvest compared to a legume mix and rye combination (LMR), rye, and fallow treatments. Soil compaction and lint yield were not significantly different between strip-tilled and no-till/tillage radish treatments in either year. Nitrogen rate and placement had a significant effect on lint yield but only N rate affected petiole NO3-N concentration. Injection of fertilizer N required an N rate of 133 kg N ha1 to achieve 95% relative yield while surface banded fertilizer N required a rate of 128 kg N ha-1 to produce 90% relative yield. A critical petiole NO3-N concentration threshold of 5,600 mg NO3-N kg-1 was also calculated to reach 92% relative yield. Future application of these results can include investigation of optimal N source for Virginia cotton production, best N placement method for cotton grown in high residue systems, and an economic analysis to determine optimum agronomic management for Virginia coastal plain cotton production.
300

Using SLEUTH Land Cover Predictions to Estimate Changes in Runoff Quality and Quantity in the Delmarva Peninsula

Ciavola, Suzanne J. 04 May 2011 (has links)
Anticipating future trends in land development and climate change is a constant challenge for engineers and planners who wish to effectively compensate for the resulting changes in stormwater runoff that will inevitably follow. This study is a regional attempt at predicting how predicted changes in land cover will affect runoff characteristics in a number of watersheds throughout the Delmarva Peninsula when compared to the current state. To predict changes in land cover and the associated land use, the SLEUTH model coupled with PED utilized a number of different inputs including population growth trends, existing geography, current land planning policies as well as different growth factors to predict where urban growth is most likely to occur. The model creates maps which show the approximate location of predicted growth for the year 2030. Using SLEUTH output, the magnitude of changes that can occur in runoff quality and quantity due to land cover changes were estimated in each of the seventeen representative watersheds that were chosen within the Delmarva Peninsula. Changes in water quality were calculated based on nutrient loading rates for sediment, phosphorus, and nitrogen. These nutrient loading rates correspond to different land uses within different county segments in the peninsula. The expected changes in water quantity were quantified using the United States Department of Agriculture's Natural Resources Conservation Services' TR-20 which estimated the peak flows for each watershed based on watershed's size, land cover, soils, and slope. Evaluating the magnitude of these potential changes in the Delmarva Peninsula provides an important look into the effects of increased urban development on the predominantly agrarian land mass, the majority of which drains to the Chesapeake Bay. / Master of Science

Page generated in 0.0444 seconds