• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 478
  • 478
  • 108
  • 91
  • 71
  • 29
  • 26
  • 22
  • 20
  • 12
  • 11
  • 10
  • 5
  • 4
  • 3
  • Tagged with
  • 1623
  • 386
  • 297
  • 290
  • 251
  • 222
  • 208
  • 197
  • 182
  • 179
  • 168
  • 163
  • 151
  • 137
  • 127
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Load-enhanced lamb wave methods for the in situ detection, localization and characterization of damage

Chen, Xin 27 May 2016 (has links)
A load-enhanced methodology has been proposed to enable the in situ detection, localization, and characterization of damage in metallic plate-like structures using Lamb waves. A baseline-free load-differential method using the delay-and-sum imaging algorithm is proposed for defect detection and localization. The term “load-differential” refers to the comparison of recorded ultrasonic signals at various levels of stress. Defect characterization is achieved by incorporating expected scattering information of guided waves interacting with defects into the minimum variance imaging algorithm, and a method for estimating such scattering patterns from the measurements of a sparse transducer array is developed. The estimation method includes signal preprocessing, extracting initial scattering values from baseline subtraction results, and obtaining the complete scattering matrix by applying radial basis function interpolation. The factors that cause estimation errors, such as the shape parameter used to form the basis function and the filling distance used in the interpolation, are discussed. The estimated scattering patterns from sparse array measurements agree reasonably well with laser wavefield data and are further used in the load-enhanced method. The results from fatigue tests show that the load-enhanced method is capable of detecting cracks, providing reasonable estimates of their localizations and orientations, and discriminating them from drilled holes, disbonds, and fastener tightness variations.
102

Fatigue crack propagation behaviour of welded and weld repaired 5083 aluminium alloy joints

Wu, Weidong, Aerospace & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2002 (has links)
Welding, as one of the most effective joining methods for metals, has been extensively applied in engineering usage for a long time. When cracks occur in the vicinity of weldments, weld repairs are frequently considered for crack repair to extend service life. In order to evaluate to what extent the weld repair has improved the fatigue life of a cracked welded structure, it is necessary to be able to determine the residual life of the cracked welded joint, as well as the life of the weld repaired joint. Both these assessments require that the fatigue crack growth data be available. The determination of crack propagation rates of welded and weld repaired structures is thus of paramount importance to implement a damage tolerant approach to structural life extension. However, since most studies on welded joints so far have concentrated on fatigue life evaluation, at the present time only limited information is available on crack propagation rates in welded joints, and virtually none on fatigue behaviour and crack propagation in weld repaired joints. This thesis has focused on examination of fatigue and crack propagation behaviour in as welded and weld repaired aluminium alloy 5083, a weldable marine grade alloy extensively used in construction of high speed ferries and aerospace structures. Crack growth rates were measured during constant amplitude fatigue testing on unwelded, as-welded and weld repaired specimens of 5083-H321 aluminium alloy. A 3-D finite element analysis was conducted to determine the stress intensity factors for different lengths of crack taking into account the three-dimensional nature of the weld profile. The effects of crack closure due to weld residual stresses were evaluated by taking measurements of the crack opening displacements and utilised to determine the effective stress intensity factors for each condition. Metallurgical examinations and fractography of the fracture surface were conducted using an optical microscope and SEM. It was found that crack growth rates in welded plates are of the same order of magnitude as those of parent material when effective stress intensity factors were applied. However weld repaired plates exhibit higher crack growth rates compared to those of unwelded and once-only welded plates.
103

Non-linear individual and interaction phenomena associated with fatigue crack growth.

Codrington, John David January 2008 (has links)
The fatigue of materials and structures is a subject that has been under investigation for almost 160 years; yet reliable fatigue life predictions are still more of an empirical art than a science. The traditional safe-life approach to fatigue design is based upon the total time to failure of a virtually defect free component. This approach is heavily reliant on the use of safety factors and empirical equations, and therefore much scatter in the fatigue life predictions is normally observed. Furthermore, the safe-life approach is unsuitable for many important applications such as aircraft, pressure vessels, welded structures, and microelectronic devices. In these applications the existence of initial defects is practically unavoidable and the time of propagation from an initial defect to final failure is comparable with the total life of the component. In the early 1970’s, the aircraft industry pioneered a new approach for the analysis of fatigue crack growth, known as damage tolerant design. This approach utilises fracture mechanics principles to consider the propagation of fatigue cracks from an initial crack length until final fracture, or a critical crack length, is reached. Since the first implementation of damage tolerant design, much research and development has been undertaken. In particular, theoretical and experimental fracture mechanics techniques have been utilised for the investigation of a wide variety of fatigue crack growth phenomena. One such example is the retardation and acceleration in crack growth rate caused by spike overloads or underloads. It is generally accepted, however, that the current level of understanding of fatigue crack growth phenomena and the adequacy of fatigue life prediction techniques are still far from satisfactory. This thesis theoretically investigates various non-linear individual and interaction phenomena associated with fatigue crack growth. Specifically, the effect of plate thickness on crack growth under constant amplitude loading, crack growth retardation due to an overload cycle, and small crack growth from sharp notches are considered. A new semianalytical method is developed for the investigations, which utilises the distributed dislocation technique and the well-known concept of plasticity-induced crack closure. The effects of plate thickness are included through the use of first-order plate theory and a fundamental solution for an edge dislocation in plate of arbitrary thickness. Numerical results are obtained via the application of Gauss-Chebyshev quadrature and an iterative procedure. The developed methods are verified against previously published theoretical and experimental data. The elastic out-of-plane stress and displacement fields are first investigated using the developed method and are found to be in very good agreement with past experimental results and finite element simulations. Crack tip plasticity is then introduced by way of a strip-yield model. The effects of thickness on the crack tip plasticity zone and plasticity-induced crack closure are studied for both small and large-scale yielding conditions. It is shown that, in general, an increase in plate thickness will lead to a reduction in the extent of the plasticity and associated crack closure, and therefore an increase in the crack growth rates. This observation is in agreement with many findings of past experimental and theoretical studies. An incremental crack growth scheme is implemented into the developed method to allow for the investigation of variable amplitude loading and small fatigue crack growth. The case of a single tensile overload is first investigated for a range of overload ratios and plate thicknesses. This situation is of practical importance as an overload cycle can significantly increase the service life of a cracked component by temporarily retarding the crack growth. Next to be studied is growth of physically small cracks from sharp notches. Fatigue cracks typically initiate from stress concentrations, such as notches, and can grow at rates higher than as predicted for a long established crack. This can lead to non-conservative estimates for the total fatigue life of a structural component. For both the overload and small crack cases, the present theoretical predictions correlate well with past experimental results for a range of materials. Furthermore, trends observed in the experiments match those of the predictions and can be readily explained through use of crack closure arguments. This thesis is presented in the form of a collection of published or submitted journal articles that are the result of research by the author. These nine articles have been chosen to best demonstrate the development and application of the new theoretical techniques. Additional background information and an introduction into the chosen field of research are provided in order to establish the context and significance of this work. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1349588 / Thesis (Ph.D.) - University of Adelaide, School of Mechanical Engineering, 2008
104

[en] VERIFICATION OF THE (DELTA)KEFF HYPOTHESIS AS THE DRIVING FORCE FOR FATIGUE CRACK GROWTH / [pt] VERIFICAÇÃO DA HIPÓTESE DO (DELTA)KEF COMO A FORÇA MOTRIZ DA PROPAGAÇÃO DE TRINCAS POR FADIGA

JULIAN ANDRES ORTIZ GONZALEZ 09 December 2021 (has links)
[pt] Medindo a rigidez de corpos de prova em testes de propagação de trinca por fadiga, Elber identificou que a ponta da trinca só está totalmente aberta durante uma parte do ciclo de carregamento, e nomeou o carregamento onde a trinca abre totalmente de carga de abertura Pab. Baseado nisso, Elber assumiu que o dano à frente da trinca era induzido apenas pela fração do carregamento acima da Pab, propondo que a força motriz na propagação de trincas por fadiga é a gama do fator de intensidade de tensões efetivo (delta)Kef. Para verificar esta hipótese, neste trabalho foram examinados diferentes cenários em testes de propagação de trinca por fadiga. Primeiramente, em corpos DC(T) de aço AISI 1020 e em corpos DC(T) e C(T) de alumínio 6351-T6 foi propagada uma trinca com (delta)K e Kmax quase constantes, medindo Pab em campo próximo e em campo distante, com extensômetros e com um sistema 3D de correlação digital de imagens (DIC). Depois, usando novos corpos DC(T) de aço e de alumínio, foi propagada uma trinca com (delta)K e Kmax quase constantes, antes e depois de um evento de sobrecarga, medindo a Pab ao longo do teste, em campo próximo e campo distante. Cabe salientar que nesses testes as espessuras dos corpos de prova foram projetadas para que a trinca propagasse em tensão plana e em deformação plana. Finalmente, em testes de propagação de trinca com (delta)K e Kmax quase constantes, em corpos DC(T) de aço e de alumínio foi medido o campo de deformação à frente da ponta da trinca com um sistema de microscópio estéreo DIC, para analisar o comportamento dentro da zona plástica, medindo também a Pab com os métodos mencionados anteriormente. Dos resultados dos testes três comportamentos foram particularmente relevantes. Nos primeiros testes de propagação com deltaK e Kmax quase constantes, a razão Kab/Kmax diminuía enquanto a trinca propagava com uma taxa constante. Nos testes de sobrecarga o valor mínimo de (delta)Kef estava defasado em relação ao valor mínimo de taxa de propagação (da/dN). Já nos testes onde foi medido o campo deformação com o sistema de microscópio estéreo DIC, a deformação 0.1mm à frente da ponta da trinca mostrou que existia dano para cargas abaixo da Pab. Portanto, estes resultados não podem ser explicados pela hipótese de Elber, e contestam o (delta)Kef como a força motriz na propagação de trincas por fadiga. / [en] Measuring the stiffness of a fatigue-cracked plate during its loading cycle, Elber discovered that this crack only completely opened after reaching the crack opening load Pop. Based on this, Elber assumed that the damage ahead of the crack is induced by the loading part above the Pop. In this way, he proposed that the range of the effective stress intensity factor (delta)Keff is the driving force in fatigue crack growth. In order to verify this hypothesis, this study investigated different scenarios in fatigue crack growth tests. For this, DC(T) specimens of AISI 1020 steel, and DC(T) and C(T) specimens of 6351-T6 aluminum were tested. The fatigue crack growth tests were performed under quasi-constant K and Kmax conditions. The Pop measurements in the near and far field were obtained from strain gage readings and 3D Digital Image Correlation (DIC) analysis. In addition, simple variable amplitude tests were performed in steel and aluminum DC(T) specimens. A single tensile overload was introduced in the fatigue crack growth experiments under quasi-constant (delta)K and Kmax conditions, also measuring the Pop throughout the test in the near and the far field. It is important to note that the thickness of the specimens was designed to perform a crack propagation in plane stress and plane strain conditions. Moreover, near tip strain measurements in steel and aluminum DC(T) specimens were obtained with a stereo microscope DIC system, to analyze the behavior within the plastic zone, also measuring the Pop with the methods previously mentioned. From the experimental results, three behaviors were particularly relevant. In the first fatigue crack growth tests with quasi-constant {(delta)K, Kmax} conditions, the ratio Kop/Kmax decreased as the crack propagates under a constant rate. In the fatigue crack growth tests with overload application, the minimum value of (delta)Keff was lagged in relation to the minimum value of the propagation rate (da/dN). Finally, in the strain measurements performed with the stereo microscope DIC system, the de-formation at 0.1mm ahead of the crack tip showed the existence of damage in load values below Pop. Therefore, these results cannot be explained by Elber s hypothesis, and question the (delta)Keff as the driving force in fatigue crack growth.
105

Validation and verification of the acoustic emission technique for structural health monitoring

Gagar, Daniel Omatsola January 2013 (has links)
The performance of the Acoustic Emission (AE) technique was investigated to establish its reliability in detecting and locating fatigue crack damage as well as distinguishing between different AE sources in potential SHM applications. Experiments were conducted to monitor the AE signals generated during fatigue crack growth in coupon 2014 T6 aluminium. The influence of stress ratio, stress range, sample geometry and whether or not the load spectrum was of constant or variable amplitude were all investigated. Timing filters were incorporated to eliminate extraneous AE signals produced from sources other than the fatigue crack. AE signals detected were correlated with values of applied cyclic load throughout the tests. Measurements of Time difference of arrival were taken for assessment of errors in location estimates obtained using time of flight algorithms with a 1D location setup. It was found that there was significant variability in AE Hit rates in otherwise identical samples and test conditions. However common trends characteristic of all samples could be observed. At the onset of crack growth high AE Hit rates were observed for the first few millimetres after which they rapidly declined to minimal values for an extended period of crack growth. Another peak and then decline in AE Hit rates was observed for subsequent crack growth before yet another increase as the sample approached final failure. The changes in AE signals with applied cyclic load provided great insights into the different AE processes occurring during crack growth. AE signals were seen to occur in the lower two-thirds of the maximum load in the first few millimetres of crack growth before occurring at progressively smaller values as the crack length increased. These emissions could be associated with crack closure. A separate set of AE signals were observed close to the maximum cyclic stress throughout the entire crack growth process. At the failure crack length AE signals were generated across the entire loading range. Novel metrics were developed to statistically characterise variability of AE generation with crack growth and at particular crack lengths across different samples. A novel approach for fatigue crack length estimation was developed based on monitoring applied loads to the sample corresponding with generated AE signals which extends the functionality of the AE technique in an area which was previously deficient. It is however limited by its sensitivity to changes in sample geometry. Experiments were also performed to validate the performance of the AE technique in detecting and locating fatigue crack in a representative wing-box structure. An acousto-ultrasonic method was used to calibrate the AE wave velocity in the structure which was used to successfully locate the 'hidden' fatigue crack. A novel observation was made in the series of tests conducted where the complex propagation paths in the structure could be exploited to perform wide area sensing coverage in certain regions using sensors mounted on different components of the structure. This also extends current knowledge on the capability of the AE technique.
106

Processing and characterisation of mullite based ceramics

Kara, Ferhat January 1994 (has links)
No description available.
107

Micromechanisms of fracture under mixed mode I and II loading

Bhattacharjee, Debashish January 1994 (has links)
No description available.
108

The elevated temperature deformation of aluminium alloy 2650

Przydatek, Jan January 1998 (has links)
No description available.
109

A study of cumulative fatigue and creep-fatigue damage in Type 316 steel

Connaughton, M. D. January 1988 (has links)
No description available.
110

The influence of multiple axis fatigue loading on structural integrity of offshore tubular joints

Mshana, Yassin Uledi Hatibu January 1993 (has links)
No description available.

Page generated in 0.3872 seconds