81 |
Full-field modelling of crack tip shielding phenomenaLu, Yanwei January 2011 (has links)
The application of fracture mechanics to engineering design has provided significant advances in understanding of the causes and mechanisms of failure and crack growth. Despite this, there are still some aspects that remain incompletely understood, such as the crack closure/crack shielding effect. The presence of crack closure/shielding acts to reduce . The mechanisms of crack closure/shielding are complicated, and have not been fully understood. This work focuses on the plasticity-induced crack tip shielding mechanism and presents a novel approach to characterise the elastic stress fields under the influence of the plastic enclave surrounding the crack tip. The model is successfully applied to determine the four stress parameters experimentally using full-field photoelastic stress analysis on polycarbonate CT specimens, following studies of the effect of the crack tip position and the valid data collection zone giving the best fit between the model predictions and the experimental data. The predicted values from the model demonstrate good data repeatability, and exhibit sensible trends as a function of crack length and load ratio that are interpretable in terms of physically meaningful changes to the plastic enclave. In addition, the model is proven to describe the stress field around a crack more accurately than classic Williams‟ stress solution. The model is also extended to AL 2024-T3 specimens using a full-field displacement measurement technique, digital image correlation. Using the Sobel edge detection method to identify the crack tip from the displacement fields with a rectangular shaped data collection zone employed in the current study, reasonable trends were again demonstrated in the experimental results as a function of crack length.
|
82 |
き裂エネルギ密度による安定成長き裂の破壊抵抗評価 (第1報, 基本関係の導出と評価方法の提案)渡辺, 勝彦, Watanabe, Katsuhiko, 畔上, 秀幸, Azegami, Hideyuki 03 1900 (has links)
No description available.
|
83 |
き裂前縁を含む面の非連続性を考慮したき裂モデルの提案とそのき裂パラメータ評価への適用渡辺, 勝彦, Watanabe, Katsuhiko, 畔上, 秀幸, Azegami, Hideyuki 09 1900 (has links)
No description available.
|
84 |
き裂エネルギ密度による安定成長き裂の破壊抵抗評価 (第2報, 薄板延性き裂への適用)渡辺, 勝彦, Watanabe, Katsuhiko, 畔上, 秀幸, Azegami, Hideyuki, 平野, 八州男, Hirano, Yasuo 03 1900 (has links)
No description available.
|
85 |
The Introduction of Crack Opening Stress Modeling into Strain-Life and Small Crack Growth Fatigue AnalysisEl-Zeghayar, Maria January 2011 (has links)
The work in this thesis is concerned with the mechanics of the initiation and growth of small fatigue cracks from notches under service load histories. Fatigue life estimates for components subjected to variable amplitude service loading are usually based on the same constant amplitude strain-life data used for constant amplitude fatigue life predictions. The resulting fatigue life estimates although they are accurate for constant amplitude fatigue, are always non conservative for variable amplitude load histories. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non conservative when constant amplitude crack growth data are used. These non conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history. Smaller load cycles following a large near yield stress overload or underload cycle experience a much lower crack opening stress than that experienced by the same cycles in the reference constant amplitude fatigue tests used to produce design data. This reduced crack opening stress results in the crack remaining open for a larger fraction of the stress-strain cycle and thus an increase in the effective portion of the stress-strain cycle. The effective strain range is increased and the fatigue damage for the small cycles is greater than that calculated resulting in a non conservative fatigue life prediction.
Previous work at Waterloo introduced parameters based on effective strain-life fatigue data and effective stress intensity versus crack growth rate data. Fatigue life calculations using these parameters combined with experimentally derived crack opening stress estimates give accurate fatigue life predictions for notched components subjected to variable amplitude service load histories. Information concerning steady state crack closure stresses, effective strain-life data, and effective stress intensity versus small crack growth rate data, are all obtained from relatively simple and inexpensive fatigue tests of smooth specimens in which periodic underloads are inserted into an otherwise constant amplitude load history. The data required to calibrate a variable amplitude fatigue crack closure model however, come from time consuming measurements of the return of crack closure levels for small cracks to a steady state level following an underload (large cracks for which crack closure measurements are easier to make cannot be used because at the high stress levels in notches under service loads a test specimen used would fracture).
For low and moderately high hardness levels in metals crack growth and crack opening stress measurements have been made using a 900x optical microscope for the small crack length at which a test specimen can resist the high stress levels encountered when small cracks grow from notches. For very hard metals the crack sizes may be so small that the measurements must be made using a confocal scanning laser microscope. In this case the specimen must be removed from the test machine for each measurement and the time to acquire data is only practical for an extended research project. The parameters for the crack closure model relating to steady state crack closure levels vary with material cyclic deformation resistance which in turn increases with hardness. One previous investigation found that the steady state crack opening level was lower and the recovery to a steady state crack opening stress level after an underload was more rapid for a hard than for a soft metal. This observation can be explained by the dependence of the crack tip plastic zone size that determines crack tip deformation and closure level on metal hardness and yield strength. Further information regarding this hypothesis has been obtained in this thesis by testing three different steels of varying hardness levels (6 HRC, 35 HRC, and 60 HRC) including a very hard carburized steel having a hardness level (60 HRC) for which no crack opening stress data for small cracks had yet been obtained.
This thesis introduced a new test procedure for obtaining data on the return of crack opening stress to a steady state level following an underload. Smooth specimens were tested under load histories with intermittent underload cycles. The frequency of occurrence of the underloads was varied and the changes in fatigue life observed. The changes in damage per block (the block consisted of an underload cycle followed by intermittent small cycles) were used to determine the value of the closure model parameter governing the recovery of the crack opening stress to its steady state level. Concurrent tests were carried out in which the crack opening stress recovery was measured directly on crack growth specimens using optical microscope measurements. These tests on metals ranging in hardness from soft to very hard were used to assess whether the new technique would produce good data for crack opening stress changes after underloads for all hardness levels. The results were also used to correlate crack closure model parameters with mechanical properties. This together with the steady state crack opening stress, effective strain-life data and the effective intensity versus crack growth rate data obtained from smooth specimen tests devised by previous researchers provided all the data required to calibrate the two models proposed in this investigation to perform strain-life and small crack growth fatigue analysis.
|
86 |
An Evaluation of the Fracture Resistance of a Stably Growing Crack by Crack Energy Density (1st Report, Derivation of Fundamental Relations and Proposal of Evaluation Method)WATANABE, Katsuhiko, AZEGAMI, Hideyuki January 1986 (has links)
No description available.
|
87 |
An Evaluation of the Fracture Resistance of a Stably Growing Crack by Crack Energy Density (2nd Report, Application to a Ductile Crack in Thin Plate)WATANABE, Katsuhiko, AZEGAMI, Hideyuki, HIRANO, Yasuo January 1986 (has links)
No description available.
|
88 |
Proposal of a New Crack Model Considering the Discontinuity in the Cracked Plane and Its Application to the Evaluation of Crack ParameterWATANABE, Katsuhiko, AZEGAMI, Hideyuki 05 1900 (has links)
No description available.
|
89 |
Crack Analysis in Silicon Solar CellsEcheverria Molina, Maria Ines 01 January 2012 (has links)
Solar cell business has been very critical and challenging since more efficient and low costs materials are required to decrease the costs and to increase the production yield for the amount of electrical energy converted from the Sun's energy. The silicon-based solar cell has proven to be the most efficient and cost-effective photovoltaic industrial device. However, the production cost of the solar cell increases due to the presence of cracks (internal as well as external) in the silicon wafer. The cracks of the wafer are monitored while fabricating the solar cell but the present monitoring techniques are not sufficient when trying to improve the manufacturing process of the solar cells. Attempts are made to understand the location of the cracks in single crystal and polycrystalline silicon solar cells, and analyze the impact of such cracks in the performance of the cell through Scanning Acoustic Microscopy (SAM) and Photoluminescence (PL) based techniques.
The features of the solar cell based on single crystal and polycrystalline silicon through PL and SAM were investigated with focused ion beam (FIB) cross section and scanning electron microscopy (SEM). The results revealed that SAM could be a reliable method for visualization and understanding of cracks in the solar cells.
The efficiency of a solar cell was calculated using the current (I) - voltage (V) characteristics before and after cracking of the cell. The efficiency reduction ranging from 3.69% to 14.73% for single crystal, and polycrystalline samples highlighted the importance of the use of crack monitoring techniques as well as imaging techniques. The aims of the research are to improve the manufacturing process of solar cells by locating and understanding the crack in single crystal and polycrystalline silicon based devices.
|
90 |
The Introduction of Crack Opening Stress Modeling into Strain-Life and Small Crack Growth Fatigue AnalysisEl-Zeghayar, Maria January 2011 (has links)
The work in this thesis is concerned with the mechanics of the initiation and growth of small fatigue cracks from notches under service load histories. Fatigue life estimates for components subjected to variable amplitude service loading are usually based on the same constant amplitude strain-life data used for constant amplitude fatigue life predictions. The resulting fatigue life estimates although they are accurate for constant amplitude fatigue, are always non conservative for variable amplitude load histories. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non conservative when constant amplitude crack growth data are used. These non conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history. Smaller load cycles following a large near yield stress overload or underload cycle experience a much lower crack opening stress than that experienced by the same cycles in the reference constant amplitude fatigue tests used to produce design data. This reduced crack opening stress results in the crack remaining open for a larger fraction of the stress-strain cycle and thus an increase in the effective portion of the stress-strain cycle. The effective strain range is increased and the fatigue damage for the small cycles is greater than that calculated resulting in a non conservative fatigue life prediction.
Previous work at Waterloo introduced parameters based on effective strain-life fatigue data and effective stress intensity versus crack growth rate data. Fatigue life calculations using these parameters combined with experimentally derived crack opening stress estimates give accurate fatigue life predictions for notched components subjected to variable amplitude service load histories. Information concerning steady state crack closure stresses, effective strain-life data, and effective stress intensity versus small crack growth rate data, are all obtained from relatively simple and inexpensive fatigue tests of smooth specimens in which periodic underloads are inserted into an otherwise constant amplitude load history. The data required to calibrate a variable amplitude fatigue crack closure model however, come from time consuming measurements of the return of crack closure levels for small cracks to a steady state level following an underload (large cracks for which crack closure measurements are easier to make cannot be used because at the high stress levels in notches under service loads a test specimen used would fracture).
For low and moderately high hardness levels in metals crack growth and crack opening stress measurements have been made using a 900x optical microscope for the small crack length at which a test specimen can resist the high stress levels encountered when small cracks grow from notches. For very hard metals the crack sizes may be so small that the measurements must be made using a confocal scanning laser microscope. In this case the specimen must be removed from the test machine for each measurement and the time to acquire data is only practical for an extended research project. The parameters for the crack closure model relating to steady state crack closure levels vary with material cyclic deformation resistance which in turn increases with hardness. One previous investigation found that the steady state crack opening level was lower and the recovery to a steady state crack opening stress level after an underload was more rapid for a hard than for a soft metal. This observation can be explained by the dependence of the crack tip plastic zone size that determines crack tip deformation and closure level on metal hardness and yield strength. Further information regarding this hypothesis has been obtained in this thesis by testing three different steels of varying hardness levels (6 HRC, 35 HRC, and 60 HRC) including a very hard carburized steel having a hardness level (60 HRC) for which no crack opening stress data for small cracks had yet been obtained.
This thesis introduced a new test procedure for obtaining data on the return of crack opening stress to a steady state level following an underload. Smooth specimens were tested under load histories with intermittent underload cycles. The frequency of occurrence of the underloads was varied and the changes in fatigue life observed. The changes in damage per block (the block consisted of an underload cycle followed by intermittent small cycles) were used to determine the value of the closure model parameter governing the recovery of the crack opening stress to its steady state level. Concurrent tests were carried out in which the crack opening stress recovery was measured directly on crack growth specimens using optical microscope measurements. These tests on metals ranging in hardness from soft to very hard were used to assess whether the new technique would produce good data for crack opening stress changes after underloads for all hardness levels. The results were also used to correlate crack closure model parameters with mechanical properties. This together with the steady state crack opening stress, effective strain-life data and the effective intensity versus crack growth rate data obtained from smooth specimen tests devised by previous researchers provided all the data required to calibrate the two models proposed in this investigation to perform strain-life and small crack growth fatigue analysis.
|
Page generated in 0.0237 seconds