• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 14
  • 11
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 44
  • 25
  • 22
  • 18
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

RDM - relationship diagramming method /

Plotnick, Fredric Leigh. Martin, Joseph P. January 2008 (has links)
Thesis (Ph. D.)--Drexel University, 2008. / Includes abstract and vita. Includes bibliographical references (leaf 81).
12

Scheduling of labor and machine limited production systems

Sahney, Vinod K. January 1900 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1970. / Vita. Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
13

The University of Wisconsin water supply alternatives under the Critical Path Method

Jordao, Eduardo Pacheco. January 1965 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1965. / eContent provider-neutral record in process. Description based on print version record. Bibliography: l. 71-73.
14

Forecasting project costs with special emphasis on mass communications

Svestka, Frank Joseph, January 1966 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1966. / Typescript. Vita. Description based on print version record. Includes bibliographical references.
15

Critical path tracing as a diagnostic evaluation method for sequential systems

Mann, Timothy Lee, 1950- January 1988 (has links)
Diagnostic tests are designed to detect and isolate faults in sequential systems. The problem is to evaluate the effectiveness of the design. For stuck faults a diagnostic model can be used. A fault simulation strategy is presented for generating this model. First, definitions, for identifying critical inputs are derived. A definition is a statement of the conditions to sensitize an input. Then a fault free simulation is used to generate a critical value array. A critical path is traced through the sensitized inputs marked in the array using a critical value array tracing algorithm that is developed. This algorithm traces a path back in time, as required for a sequential system, to identify detectable faults for the model.
16

Algorithm for resource allocation in critical path method

Yi, Sang-yŏng., Yi, Sang-yŏng. January 1971 (has links)
No description available.
17

Project management with CPM

Ahmad, Tariq Haroon January 2010 (has links)
Digitized by Kansas Correctional Industries
18

Scheduling task systems with resources.

Lloyd, Errol Lynn January 1980 (has links)
Thesis. 1980. Ph.D.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Vita. / Bibliography: leaves 144-145. / Ph.D.
19

Construction Scheduling using Critical Path Analysis with Separate Time Segments

Menesi, Wail January 2010 (has links)
Project managers today rely on scheduling tools based on the Critical Path Method (CPM) to determine the overall project duration and the activities’ float times. Such data provide important information about the degree of flexibility with respect to the project schedule as well as the critical and noncritical activities, which leads to greater efficiency in planning and control of projects. While CPM has been useful for scheduling construction projects, years of practice and research have highlighted a number of serious drawbacks that limit its use as a decision support tool. The traditional representation of CPM lacks the ability to clearly record and represent detailed as-built information such as slow/fast progress and complete representation of work interruptions caused by the various parties involved. In addition, CPM is based on two unrealistic assumptions: that the project deadline is not restricted and that resources are unlimited. With CPM, therefore, the most cost-effective corrective actions needed in order to recover delays and overruns cannot be determined. This research is based on the view that many of the drawbacks of CPM stem from the rough level of detail at which progress data is represented and analyzed, where activities’ durations are considered as continuous blocks of time. To overcome CPM drawbacks, this research presents a new Critical Path Segments (CPS) mechanism, with its mathematical formulation, that offers a finer level of granularity by decomposing the duration of each activity into separate time segments. The CPS mechanism addresses the problems with CPM in three innovative ways: (1) the duration of an activity is represented as a series of separate time segments; (2) the representation of the progress of an activity is enhanced; and (3) an optimization mechanism to incorporate project constraints into the CPS analysis. To demonstrate the ability of the CPS to provide better analysis than the traditional CPM, a number of case studies are used to show its ability to (1) simplify network relationships and accurately calculate floats and critical path(s); (2) achieve better resource allocation and facilitate accurate delay analysis; and (3) overcome problems associated with the use of multiple resource calendars. This research represents a change from well-known CPM techniques and has the potential to revolutionize and simplify the analysis of ongoing and as-built schedules. The developed CPS technique is expected to help project managers achieve a better level of control over projects and their corrective actions because it offers better visualization, optimization, and decision support for meeting project goals within the specified constraints.
20

An efficient logic fault diagnosis framework based on effect-cause approach

Wu, Lei 15 May 2009 (has links)
Fault diagnosis plays an important role in improving the circuit design process and the manufacturing yield. With the increasing number of gates in modern circuits, determining the source of failure in a defective circuit is becoming more and more challenging. In this research, we present an efficient effect-cause diagnosis framework for combinational VLSI circuits. The framework consists of three stages to obtain an accurate and reasonably precise diagnosis. First, an improved critical path tracing algorithm is proposed to identify an initial suspect list by backtracing from faulty primary outputs toward primary inputs. Compared to the traditional critical path tracing approach, our algorithm is faster and exact. Second, a novel probabilistic ranking model is applied to rank the suspects so that the most suspicious one will be ranked at or near the top. Several fast filtering methods are used to prune unrelated suspects. Finally, to refine the diagnosis, fault simulation is performed on the top suspect nets using several common fault models. The difference between the observed faulty behavior and the simulated behavior is used to rank each suspect. Experimental results on ISCAS85 benchmark circuits show that this diagnosis approach is efficient both in terms of memory space and CPU time and the diagnosis results are accurate and reasonably precise.

Page generated in 0.0937 seconds