• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 485
  • 152
  • 129
  • 97
  • 19
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 11
  • 10
  • 9
  • 8
  • Tagged with
  • 1112
  • 173
  • 144
  • 87
  • 86
  • 86
  • 80
  • 74
  • 70
  • 67
  • 65
  • 63
  • 62
  • 62
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
641

Microgravity Crystallization and Neutron Diffraction of PLP-Dependent Enzymes

Victoria, Drago Nicole 11 July 2022 (has links)
No description available.
642

Effects of Aging and Crystal Attributes on Particle Size Distributions in Breakage Experiments in Stirred Vessels

Reeves, Sheena Magtoya 30 April 2011 (has links)
Particle breakage can be significant in stirred vessels such as crystallizers. During crystallization, particle breakage can occur due to particle contact with other particles, the impeller, the suspension fluid, and/or the vessel. Such breakage produces fines and can cause filter plugging downstream. Although research has been conducted with respect to particle breakage, a comprehensive study is still needed to quantify the breakage occurring in stirred vessels. The overall goal of this research is to model the particle breakage occurring in a stirred vessel by analyzing the particle size and shape distributions that result from breakage. Breakage experiments are based on collision influences that affect the two dominant collisions types, crystal-to-crystal and crystal-to-impeller collisions. Results showed that the quantity of fines produced are affected by the solids concentration or magma density and suspension fluid utilized. Additionally, aqueous saturated solutions produced particle size distributions that differ from those obtained using a nonsolvent. Similar particle size distributions for two different materials (NaCl and KCl) are achieved in the same nonsolvent (acetonitrile) by adjusting the agitation rate using the Zwietering correlation to account for property differences; moreover, the same agitation rate adjustment produced similar distributions for KCl in acetone and acetonitrile which were both nonsolvents. However, modifications to the Zwietering correlation, such as changing the significance of the initial particle size, are proposed before this method of adjustment is deemed accurate. Number-based population modeling of particle breakage is achieved within 1-5% error for NaCl at each agitation rate investigated. Breakage modeling using a discretized population balance equation with Austin's equation for attrition and the power law form of the product function for fragmentation is a viable approach; however, more work is needed to increase the accuracy of this model.
643

Fractional crystallization and intrusion mechanisms, spur slice (Block 4), Cape Smith, New Québec

Bédard, Jean H. January 1981 (has links)
No description available.
644

Antisolvent Precipitation of L-Asparagine in a Commercial Micromixer

Ferrante, Francesco January 2012 (has links)
A commercial valve-assisted micromixer, manufactured by Ehrfeld (Germany), was tested for its use to precipitate L-asparagine from an aqueous solution using isopropanol as antisolvent. In a first part the mixing quality provided by the micromixer was studied by means of a competitive/parallel set of reactions following the approach of Baldyga, Bourne and Walker, Canadian J. Chem. Eng. 76 (1998) 641-649. Different experiments have been implemented and interpreted considering the average of Reynolds number of the inlet streams. Results show a good mixing quality that is comparable, in terms of absolute values of conversion, with other works present in literature. The precipitation experiments that followed revealed the limitation of the micromixer. The system was instable and particles adhesion occurred inside the mixing chamber. Improvements have been realized by changing the spring tension of the valve and introducing a commercial surfactant TRITON X-100.
645

Extensional-flow-induced Crystallization of Polypropylene

Bischoff White, Erica E 01 January 2011 (has links) (PDF)
A filament stretching extensional rheometer was used to investigate the effect of uniaxial flow on the crystallization of polypropylene. Samples were heated to a temperature above the melt temperature to erase their thermal and mechanical histories. The Janeschitz-Kriegl protocol was applied and samples were stretched at various extension rates to a final strain of e = 3.0. Differential scanning calorimetry was applied to crystallized samples to measure the degree of crystallinity. The results showed that a minimum extension rate, corresponding to a Weissenberg number of approximately Wi = 1, is required for an increase in percent crystallization to occur. Below this Weissenberg number, the flow is not strong enough to align the tubes of constrained polymer chains and as a result there is no change in the final percent crystallization. An extension rate was also found for which percent crystallization is maximized. The increase in crystallinity is likely due to flow-induced orientation and alignment of tubes of constrained polymer chains. Polarized-light microscopy verified an increase in number and decrease in size of spherulites with increasing extension rate. Small angle X-ray scattering showed a 7% decrease in inter-lamellar spacing at the transition to flow-induced increase in crystallization. Crystallization kinetics were examined by observing the time required for melts to crystallize under uniaxial flow. The crystallization time decreased with increasing extension rate, even for extension rates where no increase in percent crystallization was observed. These results demonstrate that the speed of crystallization kinetics is greatly enhanced by the application of extensional flow.
646

Groundmass pyroxene analyses based on growth anisotropy for estimating magma ascent history in volcanic conduit / 火道上昇履歴の推定に向けた結晶成長の異方性に基づく石基輝石分析法

Okumura, Shota 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24429号 / 理博第4928号 / 新制||理||1704(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 三宅 亮, 教授 野口 高明, 教授 下林 典正 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
647

CONFINED LAYERED POLYMERIC SYSTEMS FOR PACKAGING ANDCAPACITOR APPLICATIONS

Carr, Joel Matthew 16 August 2013 (has links)
No description available.
648

SINGLE CRYSTAL ENGINEERING OF AMORPHOUS-CRYSTALLINE BLOCK COPOLYMERS CRYSTALLIZATION, MORPHOLOGY AND APPLICATIONS

Chen, Yan January 2005 (has links)
No description available.
649

Photopolymerization-Induced Crystallization in Relation to Solid-Liquid Phase Diagrams of Blends of Blends of Poly(ethylene oxide)/Multi-functional Acrylate Monomers

Park, Soo Jeoung 26 August 2008 (has links)
No description available.
650

Technical Feasibility of an Intensified Absorption Process for Bioenergy Carbon Capture and Storage (BECCS) / Teknisk genomförbarhet av en intensifierad absorptionsprocess för bioenergi med koldioxidavskiljning och -lagring (BECCS)

Sarby, Alva, Ljungquist, Edvin, Loman, Ville January 2022 (has links)
This project aims to evaluate the technical feasibility of an absorption process for carbon capture and storage (CCS). Currently, the CCS process commonly used in the industry is energy and cost-intensive, making its large-scale development a difficult task. The process under evaluation in this project is labeled as an intensified CCS process as it is more energy-efficient, theoretically, compared to the current standard process. The intensified process is based on absorption with aqueous K2CO3/KHCO3 followed by cristallization of KHCO3. The project aims to show the technical feasibility of two parts of the intensified process, the cooling crystallization in the reactor and the regeneration of carbon dioxide through calcination. The cooling crystallization was conducted at different cooling rates for two different solution compositions, while the calcination was conducted the same for all tests. Microscopic images were utilized to examine the relationship between cooling rates, solution composition, crystal size, and clustering. Thermogravimetric analysis was used to simulate the calcination and to analyze the crystals' decomposition and purity. The report concludes that none clustered selective crystallization of potassium bicarbonate and the total regeneration of carbon dioxide through calcination were achieved. A conclusive correlation between cooling rates and crystal yields could not be proven. And the relationship between crystal size and cooling rates substantially deviated from what was expected. Based on the results the intensified process is deemed technically feasible. / Syftet med detta projekt är att utvärdera den tekniska genomförbarheten av en “carbon capture and storage” (CCS) absorptionsprocess. CCS-processen som nuvarande förekommer i industrin är både energi- och kostnadskrävande, detta förhindrar möjligheten till vidare uppskalning. Processen som utvärderas i detta projekt kallas för en intensifierad CCS-process vilket innebär att den är teoretiskt mer energieffektiv jämfört med nuvarande standardprocess. Den intensifierade processen är baserad på absorption med en K2CO3/KHCO3 vattenlösning följt av en kristallisation av KHCO3. Projektet ämnar att visa den tekniska genomförbarheten av specifikt två delar av den intensifierade processen, kylningskristalliseringen i reaktorn samt regenereringen av koldioxid genom kalcinering. Kylningskristalliseringen genomfördes med olika kylningshastigheter för två olika lösningskompositioner medan kalcineringen utfördes likadant för samtliga tester. Mikroskopiska bilder nyttjades för att undersöka förhållandet mellan kylningshastigheten, lösningens sammansättning, kristallstorlek och kristallkluster. Termogravimetrisk analys användes för att efterlikna kalcineringen samt analysera kristallernas sönderdelning och renhet. Rapporten fastställer att selektiv kristallisering av kaliumbikarbonat uppnåddes utan signifikant kluster. En definitiv korrelation mellan kylningshastighet och kristallutbyte kunde ej påvisas. Förhållandet mellan kristallstorlek och kylningshastighet avvek betydande från vad som förväntades. Baserat på resultaten bedömdes den intensifierade processen vara tekniskt genomförbar.

Page generated in 0.1029 seconds