• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of High Frequency Voltage Effects in Medium Voltage Cable Terminations

Banerjee, Sarajit January 2008 (has links)
High-power voltage sourced converters(VSC’s) are becoming increasingly prevalent in modern transmission systems. These systems primarily use switching schemes generating kHz range harmonics, which may be magnified by one or more system resonances. Despite the high frequency harmonics, VSC systems widely use insulated equipment designed for operation at power frequencies; this includes critical substation components such as medium voltage polymeric cables and terminations. The stress grading systems of non-geometric (compact) cable terminations are susceptible to insulation degradation and eventual flashover failure, under high frequency harmonic stresses. As such, the present work studies high frequency voltage effects in cross-linked polyethylene cable terminations, and their relationship to stress grading (SG) design and material properties. Finite element modeling (FEM) has been used to analyze electric field and resistive heating in termination designs, in response to parametric variations in SG material properties. Experimental studies investigate thermal behaviour in a variety of commercial termination designs, using a high voltage, high frequency test setup developed to replicate conditions of high frequency harmonic resonance in a VSC system. The study results show that high frequency voltage application increases the electric field, resistive heating, and surface temperature rise, in non-geometric (compact) termination designs using field-dependant stress grading materials. Geometric (stress cone) designs are insensitive to high frequency harmonics; however, they have disadvantages compared to compact designs, making them a less practical long-term solution for high frequency applications. Among non-geometric designs, the field-dependent electrical conductivity σ (E), the permittivity ε, and the temperature dependencies of σ (E) and ε strongly influence the termination electrical and thermal behaviour under high frequency stress. Since thermal hotspots in cable termination SG areas may lead to material degradation and eventual failure, recommendations are made for an optimal non-geometric stress grading design, for terminations operating in environments where high frequency harmonics may be present.
2

A Study of High Frequency Voltage Effects in Medium Voltage Cable Terminations

Banerjee, Sarajit January 2008 (has links)
High-power voltage sourced converters(VSC’s) are becoming increasingly prevalent in modern transmission systems. These systems primarily use switching schemes generating kHz range harmonics, which may be magnified by one or more system resonances. Despite the high frequency harmonics, VSC systems widely use insulated equipment designed for operation at power frequencies; this includes critical substation components such as medium voltage polymeric cables and terminations. The stress grading systems of non-geometric (compact) cable terminations are susceptible to insulation degradation and eventual flashover failure, under high frequency harmonic stresses. As such, the present work studies high frequency voltage effects in cross-linked polyethylene cable terminations, and their relationship to stress grading (SG) design and material properties. Finite element modeling (FEM) has been used to analyze electric field and resistive heating in termination designs, in response to parametric variations in SG material properties. Experimental studies investigate thermal behaviour in a variety of commercial termination designs, using a high voltage, high frequency test setup developed to replicate conditions of high frequency harmonic resonance in a VSC system. The study results show that high frequency voltage application increases the electric field, resistive heating, and surface temperature rise, in non-geometric (compact) termination designs using field-dependant stress grading materials. Geometric (stress cone) designs are insensitive to high frequency harmonics; however, they have disadvantages compared to compact designs, making them a less practical long-term solution for high frequency applications. Among non-geometric designs, the field-dependent electrical conductivity σ (E), the permittivity ε, and the temperature dependencies of σ (E) and ε strongly influence the termination electrical and thermal behaviour under high frequency stress. Since thermal hotspots in cable termination SG areas may lead to material degradation and eventual failure, recommendations are made for an optimal non-geometric stress grading design, for terminations operating in environments where high frequency harmonics may be present.
3

The Impact of Harmonics on the Power Cable Stress Grading System

Patel, Utkarsh January 2012 (has links)
With the continuous growth of non-linear power electronic components and the increasing penetration of the distributed generation (DG), the potential for degradation in the power quality of the existing grid exists. There are concerns that the total harmonic distortion (THD) could reach unacceptable levels of 5% or higher. Moreover, there is additional potential of the presence of amplified harmonic components in the power network grid when the harmonic frequencies align with the resonant frequencies that are being injected by power electronic components of the DG. The above conditions could increase the electrical stresses on the insulation system of the power system components, and in particular, cable terminations are a concern. Standard cable terminations are designed to operate under power frequency in the power system network and their service life is considered accordingly. The research work aims to provide an understanding of the performance of the stress grading (SG) system of a commercial cable termination when the voltage waveform is distorted due to the presence of harmonics and when the high frequency and high dV/dt voltage waveforms are present from a typical power electronic drive. An aging experiment was performed for over a 600 hour time period using the pulse width modulated (PWM) high-voltage generator to quantify the impact of high frequency stress on SG system of cable termination. Furthermore, the cable termination was tested under power frequency, distorted voltage waveforms composed of fundamental and low order harmonics using an experiment setup that generate distorted voltage waveforms. Diagnostic techniques such as surface potential distribution measurements and surface temperature monitoring are used to analyze the termination performance. The surface tangential field is calculated based on the gradient of the termination surface potential as measured with an electrostatic voltmeter. The study shows that distorted voltage waveforms with high frequency and high dV/dt components, increase the electric field, resistive heating, and surface temperature rise in the terminations that use the field-dependent SG materials. The rise of electric field by as high as 27.1% and surface temperature rise of as high as 17C demonstrates the severity on the cable terminations. Such electric field enhancements for a period of time have a potential to initiate partial discharge that could lead to degradation of the termination. Moreover, surface temperature rise of 17 deg C could reduce the allowable ampacity of the cable conductor, reduce the short circuit levels, and reduce the feeder loading limits. The field-dependent electrical conductivity (σ(E,T)), permittivity (ε), and the temperature dependencies of (σ(E,T) and ε) have strong impact to degrade the electrical and thermal properties of the termination due to stress from the non-sinusoidal distorted voltage waveform. In order to minimize the surface temperature rise from the hotspot and electrical stress enhancement that eventually lead to insulation degradation and failure, the following recommendations are made for a suitable SG design for a termination to handle the severe voltage stress: Apply the capacitively graded termination in the grid where the distortion levels are low. Under the increased total harmonic distortion levels and HF components, resistively grading with higher degree of nonlinearity (achieved through the use of ZnO filler) is beneficial. The utilities could take preventive maintenance on medium voltage power cable accessories to prevent the termination failure before it actually occurs. Researchers could focus to resolve and minimize the rising power quality issues when the distribution generations are operated, improve the power electronic converters, and provide cost-effective harmonic filter solutions for harmonic mitigation.
4

The Impact of Harmonics on the Power Cable Stress Grading System

Patel, Utkarsh January 2012 (has links)
With the continuous growth of non-linear power electronic components and the increasing penetration of the distributed generation (DG), the potential for degradation in the power quality of the existing grid exists. There are concerns that the total harmonic distortion (THD) could reach unacceptable levels of 5% or higher. Moreover, there is additional potential of the presence of amplified harmonic components in the power network grid when the harmonic frequencies align with the resonant frequencies that are being injected by power electronic components of the DG. The above conditions could increase the electrical stresses on the insulation system of the power system components, and in particular, cable terminations are a concern. Standard cable terminations are designed to operate under power frequency in the power system network and their service life is considered accordingly. The research work aims to provide an understanding of the performance of the stress grading (SG) system of a commercial cable termination when the voltage waveform is distorted due to the presence of harmonics and when the high frequency and high dV/dt voltage waveforms are present from a typical power electronic drive. An aging experiment was performed for over a 600 hour time period using the pulse width modulated (PWM) high-voltage generator to quantify the impact of high frequency stress on SG system of cable termination. Furthermore, the cable termination was tested under power frequency, distorted voltage waveforms composed of fundamental and low order harmonics using an experiment setup that generate distorted voltage waveforms. Diagnostic techniques such as surface potential distribution measurements and surface temperature monitoring are used to analyze the termination performance. The surface tangential field is calculated based on the gradient of the termination surface potential as measured with an electrostatic voltmeter. The study shows that distorted voltage waveforms with high frequency and high dV/dt components, increase the electric field, resistive heating, and surface temperature rise in the terminations that use the field-dependent SG materials. The rise of electric field by as high as 27.1% and surface temperature rise of as high as 17C demonstrates the severity on the cable terminations. Such electric field enhancements for a period of time have a potential to initiate partial discharge that could lead to degradation of the termination. Moreover, surface temperature rise of 17 deg C could reduce the allowable ampacity of the cable conductor, reduce the short circuit levels, and reduce the feeder loading limits. The field-dependent electrical conductivity (σ(E,T)), permittivity (ε), and the temperature dependencies of (σ(E,T) and ε) have strong impact to degrade the electrical and thermal properties of the termination due to stress from the non-sinusoidal distorted voltage waveform. In order to minimize the surface temperature rise from the hotspot and electrical stress enhancement that eventually lead to insulation degradation and failure, the following recommendations are made for a suitable SG design for a termination to handle the severe voltage stress: Apply the capacitively graded termination in the grid where the distortion levels are low. Under the increased total harmonic distortion levels and HF components, resistively grading with higher degree of nonlinearity (achieved through the use of ZnO filler) is beneficial. The utilities could take preventive maintenance on medium voltage power cable accessories to prevent the termination failure before it actually occurs. Researchers could focus to resolve and minimize the rising power quality issues when the distribution generations are operated, improve the power electronic converters, and provide cost-effective harmonic filter solutions for harmonic mitigation.
5

Electric Field Analysis In Stress Controlled High Voltage Cables

Bas, Gokcen 01 January 2005 (has links) (PDF)
The terminations and the joints are the basic accessories of the power cables. Power cables require electrical stress control when terminated. Since there are different types of terminations, the analysis should be done to choose the proper method for electric field control problem at the terminations. Throughout this study two different types of termination methods are investigated by using the finite element analysis program (ANSYS): Stress Controlled Termination Model with Deflector and Stress Control Tube (SCT). The results are compared with those obtained for a cable without stress control model termination. The numerical calculations are also compared with the measurements obtained by an experimental model: the electrolytic tank model.
6

Analys av fältfördelning i kabelavslut av linjära och icke linjära material : Analysis of the field distribution in cable termination by linear and nonlinear material

Gabrail, Philip, Samuelsson, Sam January 2016 (has links)
I nuläget används XLPE högspänningskablar vid överföring och distribution av elkraft och har en viktig roll i elsystemet. Kraftöverföring som sker över långa sträckor kopplas vidare från en punkt till en annan och sker med hjälp av kabelavslutningar. Dessa kabelavslutningar har en del sårbarheter ”felfunktion i kabelavslut” som påverkar hela elkraftsystemet. En analys och simulering av fältfördelning i kabelavslut genomfördes genom en teoretisk-respektive praktisk del i rapporten. Den teoretiska delen av rapporten genomfördes med hjälp av FEM programmet Comsol Multiphysics. Resultaten visade att den högsta fältkoncentrationen uppstår vid isolationen av kabeln och orsakade felfunktion och sårbarheter. Vid det linjära fallet för den elektriska delen resulterade en hög permittivitet till att potentialen och det elektriska fältet minskades vilket var densamma med låg konduktivitet. För det olinjära materialet ändrade sig konduktiviteten med elektriska fältet och tiden. Temperaturen vid det linjära fallet visade att vid en hög temperatur blev materialet mer ledande och gav ett högt elektriskt fält i halvledaren. I det olinjära fallet minskades materialets ledande. Detta kunde regleras med olika tröskelvärde (Eb) vilket inte kan i det linjära fallet. Den praktiska delen genomfördes i E.ON:s laboratorium för olika typer av kabelavslutningar som testades med 33 kV. Vissa av de provade kabelavslutningarna användes för  provningssyfte och andra plockades ur drift på grund av felfunktion i kabeln. Ett försök för att kontrollera fältkoncentrationen genomfördes i laboratorium och resulterade till en reducerad fältfördelning i kabelavslutning. Resultatet av den praktiska delen visade hur fältkoncentrationen fördelades i kabelavslutning och att fältfördelning ledde till sammanbrott i kabeln. / Nowadays XLPE high voltage cables are used in transmission and distribution of electrical power and has an important role in the electrical system. Power transmission that occurs over long distances is diverted from one point to another and is done with the help of cable terminations. These cable terminations have some vulnerabilities that affect the entire power system. The theoretical part of the report was carried out with the help of FEM software Comsol Multiphysics. Results showed that the highest field concentration occurs at the insulation of the cable and caused malfunction and vulnerabilities. In the linear case for the electrical part resulted a high permittivity that the potential and the electric field was reduced, which showed the same result for low conductivity. For the nonlinear material the conductivity changes with the electric field and time. The temperature of the linear case showed that at high temperatures the material became more conductive. In the nonlinear case the conductive material was reduced. This could be controlled with different threshold value (Eb) which cannot in the linear case. The practical part was done in E.ON:s laboratory for different type of cable terminations that were tested with 33kV. Some of the tested cable terminations were used for testing purposes and was picked out of operation because of a malfunction in the cable. An attempt to control field concentration was carried out in the laboratory and resulted to a reduced field  istribution in the cable termination. The result of the practical part showed how the field concentration was distributed in the cable termination and that the field distribution led to the collapse of the cable. / <p>QC 20160718</p>
7

Měření částečných výbojů u vysokonapěťových kabelů / Partial discharge measurement of middle and high voltage cables

Pelikán, Luděk January 2018 (has links)
The main topic of this work is the analysis of the measurement of partial discharge measurements on high voltage cables. The thesis also deals with other measurements, including the measurement of the loss factor and the voltage retention and breakdown test. Part of the text describes the issue of partial discharge, its measurement by galvanic method and methods of elimination of disturbing influences that affect this method in terms of sensitivity and accuracy of the measured values. Thesis also describes the construction of the cables, their marking and the tests carried out on them. There is also a description of the cable terminals used for measuring, especially water terminals, which are designed for high voltages and which are carried out in the practical part of the thesis. The next part deals with problems prior to the commissioning of water terminals and their preparation for certain tests, including description and evaluation of the results of the measurements.
8

Review and Design of DC Electrical Field Measurement Systems and Related Developments : For Measurements Around HVDC Cable Terminations / Genomgång av DC Elektriska Fält Mätsystem och Fortsatt Utveckling : För Mätningar Runt HVDC Kabelavslut

Bergvall, Emil January 2023 (has links)
With power generation and consumption placed further away from each other, with for example increased offshore power production, the need for HVDC transmission systems increases. As voltage levels in the HVDC transmission system are raised, the losses can be decreased, enabling efficient power transfer over longer distances. Such an increase in voltage levels comes with questions regarding insulation performance due to increased electrical field stress in high voltage apparatus, particularly in and around cable terminations. Thus, physical measurements of electrical fields or voltage potentials in air are of interest to improve the understanding of the electrical fields around cable terminations as well as to verify and develop simulation models for use at ultra high voltage. In this thesis, different measurement systems and sensors for electrical field measurements are investigated, and their benefits and drawbacks are compared to a known previously implemented reference measurement system with known strengths and limitations. Two new conceptual measurement systems with a sensor concept and positioning system are developed and proposed for a set of given conditions, such as measurement around cable terminations in air. The first proposed system is based on a shutter field mill sensor placed on variable electric potential. The second system is based on the reference system's sensor design modified to remove the need for a large positioning system. The feasibility of the two measurement systems is investigated further utilizing a COMSOL model and a mechanical prototype. The simulation model is used for electrical field simulations around cable terminations in a 2D-axisymmetric geometry as well as a 3D geometry to verify the first measurement system. The mechanical prototype is utilized to test and verify the possibility of implementing the second system's positioning system. The two final proposed measurement systems can be further developed and used as a foundation for a future implemented measurement system. / Ökad elproduktion i form av exempelvis vindkraftsverk placerade till havs leder till elproduktion och konsumtion placerad med större avstånd från varandra, vilket skapar ett behov av HVDC transmissionssystemm. Genom att höja spänningsnivåerna i transmissionssystemet kan förluster minskar, vilket möjligör effektiv kraftöverföring över längre avstånd. En sådan ökning av spänningsnivåerna i transmissionssystemet kommer med obesvarade frågor angående isoleringsprestanda i högspänningsutrustningen på grund av en höjd elektrisk stress, med särskilt intresse gällande påverkan på kabelavslut. Därför är fysiska mätningar av elektriska fält eller potentialer i luft av intresse för att förbättra förståelsen av det elektriska fältet kring kabelavslut, samt att verifiera och utveckla simuleringsmodeller för användning vid ultrahög spänningspotentialer. I detta examensarbete har olika mätsystem och sensorer för elektriska fältmätningar utredits och deras fördelar och nackdelar jämförts med ett känt tidigare implementerat rereferensmätsystem med kända styrkor och begränsningar. Två nya konceptuella mätsystem med sensorkoncept med tillhörande positioneringssystem utvecklas och föreslås för en uppsättning givna förhållanden, som t.ex mätning kring kabelavslutningar i luft. Det första föreslagna systemet är baserat på en fältkvarnssensor placerad på variabel elektrisk potential. De andra systemet är baserat på referenssystemets sensordesign modifierad för att ta bort behovet av ett stort positioneringssystem. Genomförbarheten av de två mätsystem undersöks vidare med användning av en COMSOL-modell och en mekanisk prototyp. Simuleringsmodellen används för elektriska fält simuleringar kring ett kabelavslut i en 2D-axelsymmetrisk geometri samt i en 3D-geometri för att verifiera det första mätsystemet. Mekaniska prototypen används för att testa och verifiera möjligheten att implementera andra systemets positioneringssystem. De två föreslagna mätsystemen kan vidareutvecklas och användas som en grund för ett framtida implementerat mätsystem.

Page generated in 0.101 seconds