• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 15
  • 15
  • 10
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Creation, Analysis, and Verification of a Comprehensive Model of a Micro Ion Thruster

Bodnar, Maxwell J 01 June 2015 (has links) (PDF)
A computational model of the micro-ion thruster MiXI has been developed, analyzed, and partially verified. This model includes submodels that govern the physical, magnetic, electrostatic, plasma physics, and power deposition of the thruster. Over the past few years, theses have been conducted with the goal of running tests and analyzing the results; this model is used to understand how the thruster components interact so as to make predictions about, and allow for optimization of, the thruster operation. Testing is then performed on the thruster and the results are compared to the output of the code. The magnetic structure of the thruster was analyzed and numerous different configurations generated which were also evaluated by the optimizer and tested. Using the different configurations, models, and optimization tools, the total efficiency of the thruster is theoretically able to reach 69.4%. Operational testing of the thruster at many different throttle settings demonstrated a maximum total efficiency of 45.9 ±24.6%, discharge loss values as low as 109 ±25 eV/ion, and total power required as low as 50.5 ±0.1W to maintain thruster operation with beam extraction. Measurements of the plasma were taken using a Langmuir probe and the interpretation of the tests are used to verify the plasma physics submodel. Power draw measurements and analysis of the throttle inputs during testing are compared to the performance model outputs but were not accurate or consistent enough to fully verify the power deposition and plasma physics models. Analysis of the models and operational testing in this study have led to an increased understanding of the performance and operation of the MiXI-CP-V3 thruster, furthering the effort to create an efficient, flight capable micro-ion thruster.
12

Design of a Proprioceptive Actuator Utilizing a Cycloidal Gearbox

Kimball, Craig John 01 June 2022 (has links) (PDF)
Legged robotics creates the demand for high torque compact actuators able to develop high instantaneous torque. Proprioceptive actuator design theory is a design theory that removes the need for a torque feedback device and relies on the stiffness in the leg for absorbing the high Ground Impact Forces created by walking locomotion. It utilizes a high torque density motor paired with a gearbox with a high gear ratio for torque multiplication. Previously work has been done to design a proprioceptive actuator design that utilizes a planetary gearbox to create a modular low-cost actuator for legged robotics. The purpose of this thesis is to design and analyze a proprioceptive actuator that utilizes a cycloidal gearbox design to test the feasibility of the gearbox design and look at the advantages it might bring over a planetary gearbox design. A cycloidal gearbox utilizes eccentric motion of cycloidal disks, made of epicycloids, to create a high gear ratio in a very limited space without having to rely on expensive gears for torque multiplication purposes. A prototype low-cost actuator was developed using a 2-disk cycloidal gearbox in its design. It was tested for wear life and torque control and was able to meet the torque and operation requirements of the Cal Poly legged robotics project. The design was also optimized to be made using low-cost additive manufacturing techniques rather than relying on conventional machining.
13

Static Balancing of the Cal Poly Wind Turbine Rotor

Simon, Derek 01 August 2012 (has links)
The balancing of a wind turbine rotor is a crucial step affecting the machine’s performance, reliability, and safety, as it directly impacts the dynamic loads on the entire structure. A rotor can be balanced either statically or dynamically. A method of rotor balancing was developed that achieves both the simplicity of static balancing and the accuracy of dynamic balancing. This method is best suited, but not limited, to hollow composite blades of any size. The method starts by quantifying the mass and center of gravity of each blade. A dynamic calculation is performed to determine the theoretical shaking force on the rotor shaft at the design operating speed. This force is converted to a net counterbalance mass required for each blade. Despite the most careful methodology, there may still be large errors associated with these measurements and calculations. Therefore, this new method includes a physical verification of each blade’s individual balance against all other blades on the rotor, with the ability to quantify the discrepancy between blades, and make all balance adjustments in situ. The balance weights are aluminum plugs of varying lengths inserted into the root of each blade with a threaded steel rod running through the middle. The balance adjustment is thus not visible from outside. The weight of the plug and rod represent the coarse counterbalance of each blade, based on the dynamic calculations. The threaded steel rod acts as a fine adjustment on the blades’ mass moment when traveled along the plug. A dedicated blade-balance apparatus, designed and constructed in-house, is used to verify and fine-tune each individual blade and compare it to all other blades on the rotor. The resulting blade assembly is verified on a full rotor static balancing apparatus. The full rotor apparatus measures the steady state tilt of the rotor when balanced on a point. Next, the rotors' tilt is related to its overall level of imbalance with quantifiable error. Most error comes from the fact that the hub, comparable in mass to the blades, creates a false righting moment of the assembly not present in operation. The fully assembled rotor is tested, pre and post balance, in operation on the turbine at a series of predetermined speeds. This is accomplished with a 3-axis accelerometer mounted on the main turbine shaft bearing and a control system which regulates and records turbine speed at 100 Hz
14

Modifying Succession: A History of Vegetation Alliances on Swanton Pacific Ranch

O'Connor, Jill Wilson 01 June 2019 (has links)
This thesis conducts historical research into Swanton Pacific Ranch in the County of Santa Cruz, an interdisciplinary facility for education and research managed by Cal Poly’s College of Agriculture, Food and Environmental Sciences. The study seeks to determine whether there have been discernable changes in vegetation alliances (communities), spatially or in type, within a 110-acre Study Area from the early twentieth century to the present day and how the changes compare with other similar historical analyses in California. Historical farming and ranching uses of the area are researched, and two family case studies are presented as paradigms of potential changes to vegetation as well as the connectivity with the larger socioeconomic context of Italian immigration into California. Examination of the vegetation alliances over the course of the historical study period utilizes several types of historical imagery, including twentieth-century aerial photography, ground level photography and nineteenth-century maps. This thesis diverges from scholarship that posits substantial alteration of ecological systems by anthropogenic activities by arguing that the primary alliances and geospatial borders of the vegetation in the Study area have remained essentially stable, i.e., unchanged at a macro level, since at least the early twentieth century, and that this stability has persisted despite long-term agricultural activities. This thesis contributes to the historiography of Swanton Pacific Ranch by providing a preliminary exploration of the botanic resources and the attendant anthropogenic agricultural activities on the land that may have affected those resources. It provides a framework for further study of Ranch resources as well as the cultural context of the agricultural history of the North Coast-Santa Cruz region.
15

Three Axis Attitude Control System Design and Analysis Tool Development for the Cal Poly CubeSat Laboratory

Bruno, Liam T 01 June 2020 (has links) (PDF)
The Cal Poly CubeSat Laboratory (CPCL) is currently facing unprecedented engineering challenges—both technically and programmatically—due to the increasing cost and complexity of CubeSat flight missions. In responding to recent RFPs, the CPCL has been forced to find commercially available solutions to entire mission critical spacecraft subsystems such as propulsion and attitude determination & control, because currently no in-house options exist for consideration. The commercially available solutions for these subsystems are often extremely expensive and sometimes provide excessively good performance with respect to mission requirements. Furthermore, use of entire commercial subsystems detracts from the hands-on learning objectives of the CPCL by removing engineering responsibility from students. Therefore, if these particular subsystems can be designed, tested, and integrated in-house at Cal Poly, the result would be twofold: 1) the space of missions supportable by the CPCL under tight budget constraints will grow, and 2) students will be provided with unique, hands-on guidance, navigation, and control learning opportunities. In this thesis, the CPCL’s attitude determination and control system design and analysis toolkit is significantly improved to support in-house ADCS development. The toolkit—including the improvements presented in this work—is then used to complete the existing, partially complete CPCL ADCS design. To fill in missing gaps, particular emphasis is placed on guidance and control algorithm design and selection of attitude actuators. Simulation results show that the completed design is competitive for use in a large class of small satellite missions for which pointing accuracy requirements are on the order of a few degrees.

Page generated in 0.0437 seconds