• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of reactive oxygen species on aged skeletal muscle

Perkins, Talayia Nayette 19 August 1997 (has links)
The production of reactive oxygen species (ROS) may be a contributor to the progression of sarcopenia. Sarcopenia is a generic term for the loss of skeletal muscle mass, quality and strength. ROS are usually produced by radiation, but are also the byproducts of aerobic metabolism. ROS have been found to mediate various pathological conditions in a variety of tissues, to cause oxidative damage to DNA, proteins, and lipids with advancing age, and is presumably a major factor contributing to changes associated with aging. The purpose of this investigation was to determine whether the sarcoplasmic reticulum (SR) of muscle from aged animals are more susceptible to the deleterious effects of ROS. Using isolated gastrocnemius SR vesicles extracted from adult (12m) and aged (27m) male Brown Norway-Fischer 344 hybrid rats, Ca2+ uptake and release measurements were obtained. The data showed that there was a 33% difference between aged and adult gastrocnemius mass. When gastrocnemius mass was corrected for body mass, the differences was ~20% between the two groups. A 20% decrease in SR Ca2+ uptake rate was noted in aged animals. HOCl also, decreased uptake by similar extents in both groups. This result suggest that the Ca2+ pump's response to ROS are similar in both groups. AgNO3 -induced and H2O2 -induced release in aged animals was 17.94 and 7.39 nmol/mg/min and in adult animals was 30.46 and 7.18 nmol/mg/min, respectively. H2O2-induced release, when expressed as a percent of AgNO3-induced release was increased in aged animals by 54%. The results suggest that the release channel of aged muscle appears to be more sensitive to ROS. In conclusion, the data support the theory that aged animal skeletal muscle is more susceptible to the adverse effects of ROS. / Master of Science
2

Identification of the role of plasma membrane calcium ATPase isoform 4 (PMCA4) in modulating cardiac hypertrophy using a novel small molecule inhibitor

Abou-Leisa, Riham January 2013 (has links)
Cardiac hypertrophy and heart failure are affecting almost one million people in the UK alone. The available therapies of cardiac hypertrophy are for symptomatic treatment. Recently attention has been moved towards identification of novel drugs which intervene with signalling pathways involved in hypertrophy. To achieve this goal it was important to understand the role of genes involved in the development of cardiac hypertrophy. One of such genes is plasma membrane calcium ATPase isoform 4 (PMCA4). Although several studies which used genetically modified animal models suggested the involvement of PMCA4 during the development of cardiac hypertrophy, the actual role of PMCA4 is still unclear. In this study, we will clarify the role of PMCA4 during the development of cardiac hypertrophy using a novel PMCA4 specific inhibitor. Until now there is no known PMCA4 specific inhibitor so a library of 1280 medically optimised compounds was screened using a novel in vitro assay which measures the ATPase activity of PMCA4. The compound aurintricarboxylic acid (ATA) was identified, which inhibited PMCA4 ATPase activity with higher affinity (IC50= 100 nM) compared with related ATPases. In isolated neonatal rat cardiomyocytes, ATA showed dose dependent inhibition of phenylephrine-induced hypertrophy. In vivo studies showed that ATA (5mg/kg body weight/day IP) significantly reduced the development of pressure-overload induced hypertrophy in wild type mice following two weeks transverse aortic constriction (TAC). Echocardiography and haemodynamic analyses showed that ATA treatment significantly reduced the abnormal left ventricular remodelling after TAC compared with vehicle treatment. ATA treated TAC mice showed a significant reduction in the enlargement of heart weight/tibia length ratio as well as cardiomyocyte cross sectional surface area compared with vehicle treated TAC mice. A significant reduction in the expression of the hypertrophic markers ANP and BNP and, importantly, in the percentage of fibrosis was observed in ATA treated TAC mice compared with vehicle treated TAC mice. In addition, ATA treatment significantly reversed the already established pressure overload induced hypertrophy following three weeks TAC. ATA treatment to TAC mice led to a significant reduction in the expression of the bona fide calcineurin target MCIP1 and a reduction in NFAT phosphorylation level in vivo and NFAT transcriptional activity in vitro. ATA did not show a direct inhibition to the active form of calcineurin nor to the phosphatase activity of full length calcineurin.In conclusion, we have identified ATA as a novel and specific inhibitor to PMCA4 ATPase activity. Pharmacological inhibition of PMCA4 significantly reduces the hypertrophic response to pressure overload likely through inhibition of calcineurin/NFAT signalling.
3

Placental Development and Expression of Calcium Transporting Proteins in the Extraembryonic Membranes of a Placentotrophic Lizard

Stinnett, Haley K., Stewart, James R., Ecay, Tom W., Pyles, Rebecca A., Herbert, Jacquie F., Thompson, Michael B. 01 March 2012 (has links)
Pseudemoia pagenstecheri is a viviparous Australian scincid lizard in which the maternal-embryonic placental interface is differentiated into structurally distinct regions. The chorioallantoic placenta contains an elliptical-shaped region, the placentome, characterized by hypertrophied uterine and embryonic epithelial cells supported by dense vascular networks. The remainder of the chorioallantoic placenta, the paraplacentome, is also highly vascularized but uterine and chorionic epithelia are thin. An omphaloplacenta with hypertrophied epithelia is located in the abembryonic hemisphere of the egg. There is extensive placental transport of organic and inorganic nutrients, e.g., 85-90% of neonatal calcium is received via placental transfer. Calcium uptake by extraembryonic membranes of squamates correlates with expression of the intracellular calcium binding protein, calbindin-D 28K, and plasma membrane calcium ATPase (PMCA) is a marker for active calcium transport. We estimated expression of calbindin-D 28K and PMCA in the chorioallantoic membrane in a developmental series of embryos using immunoblotting and used immunohistochemistry to define the cellular localization of calbindin-D 28K to test the hypotheses that 1) expression of calcium transporting proteins is coincident with placental transport of calcium and 2) the placenta is functionally specialized for calcium transport in regions of structural differentiation. Calbindin-D 28K and PMCA were detected at low levels in early stages of development and increased significantly prior to birth, when embryonic calcium uptake peaks. These data support the hypothesis that placental calcium secretion occurs over an extended interval of gestation, with increasing activity as embryonic demand escalates in late development. In addition, calbindin-D 28K expression is localized in chorionic epithelial cells of the placentome and in the epithelium of the omphalopleure of the omphaloplacenta, which supports the hypothesis that regional structural differentiation in the placenta reflects functional specializations for calcium transport.
4

Sarcolipin Overexpression Improves Fatigue Resistance by Enhancing Skeletal Muscle Energetics

Sopariwala, Danesh Hooshmand 20 May 2015 (has links)
No description available.
5

Caracterização de uma cálcio ATPase PMR1 de \'Aspergillus fumigatus\' / Characterization of an Aspergillus fumigatus PMR1 calcium ATPase.

Soriani, Frederico Marianetti 05 September 2006 (has links)
Os conhecimentos sobre a regulação dos níveis de cálcio e manganês no Aspergillus fumigatus são bastante limitados, sendo que a homeostase destes íons pode ser diretamente controlada pela ação de ATPases específicas, dentre elas as cálcio ATPases da subfamília PMR1. Desta forma, o objetivo do presente estudo foi a expressão, caracterização e validação como alvo quimioterapêutico do gene Afpmr1 de A. fumigatus. Inicialmente, foi realizada a complementação funcional, de uma cepa de S. cerevisiae nocaute para a PMR1, em meios de cultura suplementados com EGTA ou manganês, revertendo o fenótipo da cepa nocute. Além disto, após expressão do gene Afpmr1, foi verificada uma reversão na intensa distribuição de quitina na parede celular da cepa nocaute. Paralelamente, para a RNAi, um fragmento do gene Afpmr1 apresentando baixa identidade com outros genes de cálcio ATPases de diferentes espécies foi clonado em vetor de expressão em A. fumigatus (pALB1). Após indução da expressão, a construção de RNA dupla fita para RNAi silenciou tanto o gene alb1 isoladamente (clone controle), quanto o duplo silenciamento com o gene de interesse Afpmr1, conferindo à ambas construções coloração branca às colônias. Uma vez confirmado o silenciamento gênico, por técnicas de RT-PCR quantitativo, os clones selecionados foram utilizados em ensaios de fagocitose e killing de macrófagos. O clone com o gene Afpmr1 silenciado apresentou diminuição na porcentagem de fagocitose, no número médio de conídios fagocitados e na eficiência de eliminação destes conídios quando comparados com seus controles. Estes resultados mostram que o gene Afpmr1 pode ser expresso funcionalmente em sistemas heterólogos e seu silenciamento, em A. fumigatus, influencia processos celulares que podem estar relacionados à manutenção da estrutura e composição da parede celular, além de desencadear alterações na fagocitose e killing de macrófagos. / The knowledge about the regulation of Aspergillus fumigatus calcium and manganese levels are very limited, while these ions homeostasis could be directly controlled by the function of specific ATPases, like the PMR1 calcium ATPase. In this way, the aim of the present work was the expression, characterization e validation, as chemotherapeutic target, of the A. fumigatus Afpmr1 gene. Initially, the functional complementation of a PMR1 knock-out strain phenotype was analyzed in EGTA or manganese supplemented culture media. Besides, after Afpmr1 expression, an intense distribution of chitin through the cell wall of the knock-out strain was reversed. At the same time, a fragment of the Afpmr1 gene, showing low identity values for another calcium ATPase genes, was cloned in an A. fumigatus expression vector (pALB1) for RNAi. After the induction of gene expression, a double strand RNA construct for RNAi has properly silenced either the alb1 gene alone (control clone), or the double silencing with the gene of interest Afpmr1, leading to both constructions white colored colonies. After confirmation of the gene silencing by quantitative RT-PCR techniques, the selected clones were used in macrophages killing and phagocytosis assays. The Afpmr1 silenced clone showed a decrease in the phagocytosis percentage, in the mean number of internalized conidia and in the killing percentage when compared with control groups. These results show that the Afpmr1 gene can be functionally expressed in eukaryotic heterologous systems and its silencing, in A. fumigatus, alters cellular processes that can be related with the maintenance of the cell wall structure and composition, as well as promote alterations in the macrophages phagocytosis and killing.
6

Metabolic regulation of the plasma membrane calcium pump in pancreatic ductal adenocarcinoma

James, Andrew January 2015 (has links)
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive form of cancer with poor prognosis and limited treatment options. Since many patients present with metastatic disease and are thus ineligible for surgical resection, PDAC is almost ubiquitously fatal; new treatment options are therefore needed to combat this disease. A key hallmark of many cancers, including PDAC, is metabolic reprogramming and a shift towards a high glycolytic rate, known as the Warburg effect. This allows cancer cells to generate ATP in the face of hypoxia and to meet the increased metabolic requirements associated with rapid proliferation. We hypothesised that this shift towards glycolytic metabolism has important implications for the regulation of cytosolic Ca2+ ([Ca2+]i) in PDAC, since the plasma membrane Ca2+ ATPase (PMCA), which is critical for maintaining low [Ca2+]i and thus cell survival, is dependent on ATP to extrude cytosolic Ca2+. The relative contributions of mitochondrial vs glycolytic ATP in fuelling the PMCA in human PDAC cell lines (PANC-1 and MIA PaCa-2) were therefore assessed. Moreover, the effects of numerous mechanistically distinct metabolic inhibitors on key readouts of cell death, [Ca2+]i and ATP were investigated. Treatment with glycolytic inhibitors induced significant ATP depletion, PMCA inhibition, [Ca2+]i overload and cell death in both PANC-1 and MIA PaCa-2 cells, while mitochondrial inhibitors had no effect. Subsequently, these experiments were repeated on PDAC cells cultured in media formulated to "switch" their highly glycolytic phenotype back to one more reliant on mitochondrial metabolism. Culture in nominal glucose-free media supplemented with either galactose (10 mM) or alpha-ketoisocaproate (KIC, 2 mM) resulted in a switch in metabolism in MIA PaCa-2 cells, where proliferation rate and glycolysis were significantly decreased, and in the case of cells cultured in KIC, oxidative phosphorylation rate was preserved (assessed using Seahorse XF technology). Following culture of MIA PaCa-2 cells in either galactose or KIC, glycolytic inhibition failed to recapitulate the profound ATP depletion, PMCA inhibition and [Ca2+]i overload observed in glucose-cultured MIA PaCa-2 cells. These data demonstrate that in PDAC cells exhibiting a high rate of glycolysis, glycolytically-derived ATP is important for fuelling [Ca2+]i homeostasis and thus is critical for survival. Finally, using a cell surface biotinylation assay, the keyglycolytic enzymes LDHA, PFKP, GAPDH, PFKFB3 and PKM2 were all found to associate with the plasma membrane in MIA PaCa-2 cells, possibly in a tyrosine phosphorylation-dependent manner. To investigate whether the dynamic membrane-association of glycolytic enzymes provides a privileged supply of ATP to the PMCA in PDAC, the effects of tyrosine kinase inhibitors was assessed on PMCA activity. However, while these inhibited PMCA activity, this occurred without accompanying global ATP depletion. These data indicate that glycolytic ATP is critical for the regulation of [Ca2+]i by the PMCA in PDAC, and that the glycolytic regulation of the PMCA may be an important therapeutic locus. However, further research is required to determine whether membrane-bound glycolytic enzymes regulate its activity.
7

Caracterização de uma cálcio ATPase PMR1 de \'Aspergillus fumigatus\' / Characterization of an Aspergillus fumigatus PMR1 calcium ATPase.

Frederico Marianetti Soriani 05 September 2006 (has links)
Os conhecimentos sobre a regulação dos níveis de cálcio e manganês no Aspergillus fumigatus são bastante limitados, sendo que a homeostase destes íons pode ser diretamente controlada pela ação de ATPases específicas, dentre elas as cálcio ATPases da subfamília PMR1. Desta forma, o objetivo do presente estudo foi a expressão, caracterização e validação como alvo quimioterapêutico do gene Afpmr1 de A. fumigatus. Inicialmente, foi realizada a complementação funcional, de uma cepa de S. cerevisiae nocaute para a PMR1, em meios de cultura suplementados com EGTA ou manganês, revertendo o fenótipo da cepa nocute. Além disto, após expressão do gene Afpmr1, foi verificada uma reversão na intensa distribuição de quitina na parede celular da cepa nocaute. Paralelamente, para a RNAi, um fragmento do gene Afpmr1 apresentando baixa identidade com outros genes de cálcio ATPases de diferentes espécies foi clonado em vetor de expressão em A. fumigatus (pALB1). Após indução da expressão, a construção de RNA dupla fita para RNAi silenciou tanto o gene alb1 isoladamente (clone controle), quanto o duplo silenciamento com o gene de interesse Afpmr1, conferindo à ambas construções coloração branca às colônias. Uma vez confirmado o silenciamento gênico, por técnicas de RT-PCR quantitativo, os clones selecionados foram utilizados em ensaios de fagocitose e killing de macrófagos. O clone com o gene Afpmr1 silenciado apresentou diminuição na porcentagem de fagocitose, no número médio de conídios fagocitados e na eficiência de eliminação destes conídios quando comparados com seus controles. Estes resultados mostram que o gene Afpmr1 pode ser expresso funcionalmente em sistemas heterólogos e seu silenciamento, em A. fumigatus, influencia processos celulares que podem estar relacionados à manutenção da estrutura e composição da parede celular, além de desencadear alterações na fagocitose e killing de macrófagos. / The knowledge about the regulation of Aspergillus fumigatus calcium and manganese levels are very limited, while these ions homeostasis could be directly controlled by the function of specific ATPases, like the PMR1 calcium ATPase. In this way, the aim of the present work was the expression, characterization e validation, as chemotherapeutic target, of the A. fumigatus Afpmr1 gene. Initially, the functional complementation of a PMR1 knock-out strain phenotype was analyzed in EGTA or manganese supplemented culture media. Besides, after Afpmr1 expression, an intense distribution of chitin through the cell wall of the knock-out strain was reversed. At the same time, a fragment of the Afpmr1 gene, showing low identity values for another calcium ATPase genes, was cloned in an A. fumigatus expression vector (pALB1) for RNAi. After the induction of gene expression, a double strand RNA construct for RNAi has properly silenced either the alb1 gene alone (control clone), or the double silencing with the gene of interest Afpmr1, leading to both constructions white colored colonies. After confirmation of the gene silencing by quantitative RT-PCR techniques, the selected clones were used in macrophages killing and phagocytosis assays. The Afpmr1 silenced clone showed a decrease in the phagocytosis percentage, in the mean number of internalized conidia and in the killing percentage when compared with control groups. These results show that the Afpmr1 gene can be functionally expressed in eukaryotic heterologous systems and its silencing, in A. fumigatus, alters cellular processes that can be related with the maintenance of the cell wall structure and composition, as well as promote alterations in the macrophages phagocytosis and killing.
8

SERCA C674 oxidation modulates mitochondrial calcium, indirectly regulating apoptosis in cardiac myocytes

Goodman, Jena Brooke 17 February 2021 (has links)
Heart failure is a debilitating condition in which the heart cannot meet the metabolic demands of the body. Chronic β-adrenergic (β-AR) stimulation causes pathological myocardial remodeling that leads to heart failure, in part, by promoting apoptosis of cardiac myocytes. Work from our laboratory has shown that β-AR stimulated apoptosis is dependent on reactive oxygen species (ROS), but the molecular targets by which ROS mediate apoptosis is not known. One target of ROS that may contribute to activating the apoptosis pathway is the sarco-endoplasmic reticulum ATPase (SERCA2). SERCA2 is responsible for moving the large majority of intracellular calcium in the cardiac myocyte. We have identified that SERCA2 can undergo oxidative post-translational modification (OPTM) of cysteine C674: Low ROS increase activity while high ROS decreases. Since SERCA is the primary calcium transporter and is located in close proximity of the mitochondria, it is possible SERCA activity may affect the level of calcium in mitochondria, which in excess is a known activator of the intrinsic mitochondrial apoptosis pathway. Progressive loss of myocardial cells in ischemia and heart failure likely contributes to the pathogenesis of cardiomyopathy. We hypothesized that oxidation of SERCA2 at C674 increases mitochondrial calcium, thereby activating the mitochondrial apoptosis pathway. To address this thesis, we used a novel redox-insensitive SERCA2 mutation in which C674 is replaced by serine (C674S) to determine the role of oxidative inhibition of SERCA in H2O2-stimulated apoptosis in vitro. We tested our hypothesis using adult rat ventricular myocytes (ARVM) that overexpress wild type or SERCA C674 and assessed intra-organelle calcium content, mitochondrial function and activation of the apoptosis pathway. To measure mitochondrial calcium, we optimized the use of an ultrasensitive genetically-encoded calcium indicator (GECI) targeted to the mitochondria which was expressed in ARVM via adenovirus infection. Redox-insensitive SERCA C674S expressing ARVM displayed less sensitivity to H2O2-stimulated mitochondrial calcium uptake which was confirmed by measuring calcium sensitive pyruvate dehydrogenase phosphorylation status. Furthermore, SERCA C674S ARVM were protected from H2O2 -mediated apoptosis, indicated by a reduction in cytochrome c release and annexin V staining. Lastly, H2O2 treatment decreased the cytosolic ATP/ADP ratio and depolarized the mitochondrial membrane potential, however this was independent of SERCA C674 oxidation. Taken together, these experiments elucidate a novel role for SERCA2 activity in cardiac myocytes and provide a potential therapeutic target for reducing cardiac myocyte apoptosis, potentially improving cardiac function during heart failure.
9

A Calcium ATPase in Mosquito Larvae as a Putative Receptor for Cry Toxins

Ikeda, Yoshio 27 August 2013 (has links)
No description available.
10

The Plasma Membrane Calcium-ATPase in Mammary Gland Epithelial Cell Lines and Consequences of its Inhibition in a Model of Breast Cancer

Lee, Won Jae Unknown Date (has links)
Ionized calcium (Ca2+), acting as an intracellular messenger, controls numerous biological processes that are essential for life. However, it is also able to convey signals that result in cell death. The fidelity of Ca2+ as a universal second messenger therefore depends on mechanisms that specifically and dynamically regulate its levels within a cell, as well as maintain resting intracellular Ca2+ concentration ([Ca2+]i) very low. One such mechanism for Ca2+ signaling and homeostasis is the plasma membrane Ca2+-ATPase (PMCA), which is a primary active Ca2+ transporter that translocates Ca2+ from a low intracellular Ca2+ environment to a high extracellular environment. There are four mammalian PMCA isoforms (PMCA1-4), which are differentially expressed depending on tissue or cell type. PMCA isoforms possess different sensitivities to biochemical regulation of Ca2+ efflux activity and are also able to subtly alter the dynamics of Ca2+ signals. These properties suggest that the PMCA is not merely a trivial mechanism for Ca2+ extrusion but is influential in contributing to the Ca2+ signaling requirements and unique physiology of different cells. The indispensable nature of Ca2+ signaling in organs such as the brain, heart and skeletal muscle has been the studied extensively but little is known about the roles and regulation of Ca2+ in the mammary gland. This is despite the fact that the mammary gland is a site of extensive Ca2+ flux during lactation. However, cumulating evidence indicates that upregulation of PMCA2 expression in the mammary gland is a major mechanism for milk Ca2+ enrichment. Therefore, the PMCA is likely to be an important mediator of bulk Ca2+ homeostasis in the mammary gland. Studies in other model systems also suggest that PMCAs may regulate other cellular processes such as cell proliferation, differentiation and apoptosis that are required for normal mammary gland physiology. These basic cellular processes are also disturbed in breast cancer and hence deregulation of PMCA expression in the mammary gland may have pathophysiological consequences. Previous studies show that PMCA1 expression is greater in tumorigenic MCF-7 and MDA-MB-231 human breast cancer cells compared to non-tumorigenic MCF-10A human breast epithelial cells. Furthermore, the expression of PMCA1b and PMCA4b is lower in human skin and lung fibroblasts neoplastically transformed by simian virus 40, compared to non-transformed counterparts. It is therefore hypothesized that regulation of PMCA isoform expression is disrupted in breast cancer and that inhibition of PMCA expression in an in vitro model of breast cancer has important effects in modulating intracellular Ca2+ homeostasis, cell proliferation, differentiation and apoptosis. This thesis describes the use of real time RT-PCR to compare PMCA isoform mRNA expression in tumorigenic and non-tumorigenic mammary gland epithelial cells. It demonstrates that particular breast cancer cell lines overexpress PMCA2, an isoform with restricted tissue distribution and which is present in abundant amounts in the lactating rat mammary gland. Thus, some breast cancers may be characterized by the overexpression of Ca2+ transporters that are normally upregulated during the physiological course of lactation. The pathophysiological significance of PMCA2 overexpression in breast cancer is uncertain and future investigations should look at whether levels of PMCA isoform expression correlate with malignancy, prognosis or survival. To address the second hypothesis of this thesis, a stable MCF-7 Tet-off human breast cancer cell line able to conditionally express PMCA antisense was generated. This strategy was necessary due to the current lack of specific pharmacological inhibitors of the PMCA. This thesis shows that PMCA antisense expression significantly inhibits PMCA protein expression, while subtly affecting PMCA-mediated Ca2+ efflux without causing cell death. However, it also reveals that inhibition of PMCA expression has major effects in mediating cell proliferation and cell cycle progression. Moderate changes in PMCA expression and PMCA-mediated Ca2+ transport result in dramatic consequences in MCF-7 cell proliferation. These studies not only support the supposition that modulation of Ca2+ signaling is a viable therapeutic approach for breast cancer but also suggest that PMCAs are possible drug targets. Alternatively, inhibitors of the PMCA may act as adjuvants to augment the efficacy of other anti-neoplastic agents like tamoxifen that have been shown to modulate Ca2+ signaling. Since the discovery of a new family of primary active Ca2+ transporters, which are related to PMCAs, the opportunities in this field of research are very promising.

Page generated in 0.0723 seconds