• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transcriptional control of slowpoke, a calcium activated potassium channel gene /

Bohm, Rudy Ashish, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 120-134). Available also in a digital version from Dissertation Abstracts.
2

Mechanism of dopamine-mediated activation of BK channels in human coronary artery smooth muscle cells

Natarajan, Aruna Ramachandran. January 2008 (has links)
Thesis (Ph.D.)--Georgetown University, 2008. / Includes bibliographical references.
3

Molecular and genetic mechanisms of ethanol tolerance in the fruit fly

Krishnan, Harish Ravikumar, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
4

Role of the intermediate-conductance Ca²⁺-activated K⁺ channel (K[ca]3.1) in coronary smooth muscle cell phenotypic modulation

Tharp, Darla L., January 2007 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. "December 2007" Includes bibliographical references.
5

SELECTIVE MODULATION OF SMALL CONDUCTANCE CALCIUM ACTIVATED POTASSIUM CHANNELS IN C57BL/6J MICE RESCUES MEMORY AND ATTENTION DISORDERS IN KETAMINE-INDUCED PSYCHOSIS: A NEW THERAPEUTIC APPROACH

Unknown Date (has links)
Small conductance Ca2+-activated K+ (SK) channels are expressed throughout brain regions important for long-term memory. They constrain the intrinsic excitability of neurons by enhancing afterhyperpolarization, shape glutamatergic synaptic potentials and limit induction of NMDA receptor-dependent synaptic plasticity. Behaviorally, SK channels modulate learning and memory encoding. It is hypothesized that SK channels influence cognitive symptoms of psychosis including executive functioning, working memory, and selective attention. Theories of psychosis currently posit that symptoms of psychosis are a result of dopaminergic hyperfunction, and glutamatergic dysregulation which can be induced following administration of the NMDA receptor antagonist, ketamine. Initial experiments confirmed that sub-chronic treatment with KET produced significant impairment of object recognition memory, trace fear memory, and latent inhibition compared to SAL mice. A comparison of ketamine dosing regimens revealed the necessity for sub-chronic/chronic dosing on a consistent schedule with a wash out period, to obtain long-lasting attention and memory impairment. These experiments revealed for the first time that sub-chronic KET treatment elicited a new phenotype in male C57BL/6J mice: audible vocalizations. KET mice emitted audible vocalizations within 10 min of receiving KET injections, and vocalizations were detected up to 30 min after injection. Experiments conducted to determine the efficacy of SK channel agonists and antagonists on SK channels to modulate attention and memory in the ketamineinduced model of psychosis in C57BL/6J mice demonstrated for the first time that the SK2 channel activator, CyPPA, significantly reduced memory impairment and decreased the attention deficit of KET mice. A new method of analysis for trace fear conditioning freezing responses permitted a more accurate measurement of the ability of mice to discriminate the predicted delivery of shock during trace versus CS intervals. The application of the novel analytical method further demonstrated that KET mice failed to accurately discriminate these intervals, due to their impaired attention and acquisition of the trace conditioned response. This study examined the efficacy of SK channel drugs to rescue cognitive impairments in a pharmacological mouse model of schizophrenia. The results indicate that SK2 subunit activators and blockers, may provide a new therapeutic treatment for memory impairment and attention deficits seen in schizophrenic disorders. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
6

Molecular and genetic mechanisms of ethanol tolerance in the fruit fly

Krishnan, Harish Ravikumar, 1975- 29 August 2008 (has links)
Not available
7

Rôle fonctionnel des canaux potassiques activés par le calcium au sein de progéniteurs cardiaques : implication en médecine régénérative

Vigneault, Patrick 04 1900 (has links)
L'insuffisance cardiaque (IC) est un processus progressif et inexorable menant au remodelage pathologique du cœur et à la destruction du parenchyme cardiaque. Indépendamment de l'étiologie, on observe une diminution d'environ 30% du nombre de cardiomyocytes ventriculaires au stade terminal de la maladie. Reposant sur les données précliniques convergentes dans les modèles d'IC, le concept novateur de thérapie cellulaire a suscité beaucoup d’espoir en cardiologie. Bien que leur rôle dans l'homéostasie cardiaque soit controversé, les progéniteurs cardiaques endogènes (eCPCs) qui perdurent au sein du myocarde adulte possèderaient les caractéristiques optimales en vue de la régénération myocardique. Nos données électrophysiologiques montrent que le courant potassique dépendant du Ca2+ de conductance intermédiaire (IKCa3.1) est dominant et qu'il contribue à la détermination du potentiel membranaire (Vmem). L'hyperpolarisation engendrée par l'activation du canal KCa3.1 (SK4; KCNN4) maintient le gradient électrique et favorise l'entrée capacitive de Ca2+ (ECC). D'un point de vue fonctionnel, la potentialisation de la signalisation calcique intracellulaire induite par KCa3.1 semble cruciale pour la prolifération des eCPCs c-Kit+. Puisque le statut clinique est connu pour avoir des conséquences néfastes sur la fonctionnalité des cellules souches, nous avons comparé la densité du courant IKCa3.1 dans des eCPCs c-Kit+ provenant de cœurs sains et insuffisants. En accord avec les données électrophysiologiques, nos résultats démontrent que l'insuffisance cardiaque congestive (CHF) diminue significativement l'expression de KCa3.1 ainsi que des protéines régulatrices du cycle cellulaire. Les cellules souches dérivées d'explants cardiaques (EDCs) représentent un autre produit cellulaire prometteur pour la thérapie cellulaire en cardiologie. Les EDCs se composent de sous-populations complémentaires dont la proportion varie en fonction du statut clinique. Alors que la population CD90- constitue la fraction active en termes d'efficacité thérapeutique, il a été démontré qu'une proportion élevée de cellules CD90+ réduit le potentiel régénératif des EDCs. Afin de faire la lumière sur les déterminants ioniques de la thérapie cellulaire cardiaque, les propriétés électrophysiologiques des populations CD90+ et CD90- ont été comparées. Considérant l'importance de KCa3.1 pour la fonction des eCPCs c-Kit+, la présence de canaux potassiques Ca2+-dépendants (KCa) dans les EDCs a été investiguée. Nous avons identifié 2 types de canaux KCa dans les EDCs humaines. Le canal KCa1.1 (BKCa; KCNMA1) est exprimé de façon homogène alors que KCa3.1 est présent exclusivement dans les cellules CD90-. D'un point de vue fonctionnel, l'activité du canal KCa3.1 détermine le Vmem et supporte la prolifération des EDCs. Puisque ce canal est présent uniquement dans la population cardiogénique, l'expression de KCa3.1 pourrait être un facteur déterminant de la capacité régénérative des EDCs. Nous avons investigué cette hypothèse et confirmé que la transplantation de cellules génétiquement modifiées pour exprimer le canal KCa3.1 augmente la régénération cardiaque dans un modèle murin d'IC d'origine ischémique. Pour la première fois, nous avons fait la démonstration que la modulation des propriétés ioniques de cellules souches peut améliorer leur efficacité thérapeutique. / Heart failure (HF) is a progressive disease characterized by extensive pathological remodelling of the heart and myocardial damage. Regardless of the etiology, a decrease of about 30% in the number of ventricular cardiomyocytes is observed at the terminal stage of HF. Based on converging preclinical data in HF models, the innovative concept of cell therapy has generated a great deal of enthusiasm in cardiology. Although the role of cardiac stem cells in cardiac homeostasis is highly controversial, the multipotent progenitors that persist within the adult myocardium possess the ideal characteristics for cardiac regeneration, especially because of their cardiogenic committment. Plasma membrane ion channels are involved in the fundamental processes of virtually all cells that make up the human body, including stem cells. A wide range of functional ion channels was identified in ex vivo proliferated endogenous cardiac progenitor cells (eCPCs), but their function remains poorly understood. We have completed the very first characterization of the ionic profile of freshly-isolated c-Kit+ eCPCs. We found that the intermediate conductance Ca2+-activated potassium current (IKCa3.1) is the predominant conductance and contributes to the determination of membrane potential (Vmem). The hyperpolarization generated by the activation of the KCa3.1 channel (SK4; KCNN4) maintains the electrical gradient and promotes store-operated Ca2+-entry (SOCE) that activates progenitor cell proliferation. Experimental congestive heart failure (CHF) significantly decreased the expression of KCa3.1 as well as cell cycle regulatory proteins. Taken together, these findings suggest that alterations in KCa3.1 may have pathophysiological and therapeutic significance in regenerative medicine In addition to c-Kit+ eCPCs, cardiac explants-derived cells (EDCs) represent another promising cell product for myocardial repair. EDCs are obtained as a heterogeneous mixture composed of complementary subpopulations. Interestingly, it was found that a high proportion of CD90+ cells reduce the functional benefits of EDCs therapy. Consistent with this observation, it has recently been shown that the CD90- population constitutes the active fraction in terms of therapeutic efficacy. In order to gain insight into the ionic determinants of EDCs function, the electrophysiological properties of the CD90+ and CD90- populations were studied. Considering the importance of KCa3.1 in c-Kit+ CPCs, we evaluated the presence of KCa channels in human EDCs. We have identified 2 types of KCa channels in ex vivo expanded EDCs. While KCa1.1 (BKCa; KCNMA1) channel was homogeneously expressed in both subpopulations, KCa3.1 was found exclusively in the CD90- cell fraction. Similar to our previous observations in freshly isolated c-Kit+ eCPCs, KCa3.1 was responsible for the determination of Vmem under resting conditions and during SOCE. Importantly, we demonstrated that transplantation of genetically-modified EDCs to over-express KCNN4 potentiates cardiac regeneration in a murine model of ischemic cardiomyopathy. This study provides the first evidence in the literature that modulating the activity of a single plasma membrane ion channel can truly improves the therapeutic efficacy of progenitor cells.

Page generated in 0.1115 seconds