• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of the mechanisms by which carbohydrate administration during prolonged muscle contractions increases performance = Étude des mécanismes par lesquels l'administration de glucides améliore la performance durant des contractions prolongées du muscle

Karelis, Antony D. January 2004 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
2

Étude électrophysiologique, pharmacologique et anatomique des mécanismes impliqués dans la modulation de l'excitabilité des afférences fusoriales du noyau mésencéphalique du trijumeau

Verdier, Dorly January 2004 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
3

Étude biophysique des facteurs influençant l'activité des toxines du bacille de Thuringe

Fortier, Mélanie January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
4

Base moléculaire et rôle du courant potassique transitoire I(A) des interneurones de l'hippocampe chez le rongeur

Bourdeau, Mathieu 05 1900 (has links)
Les mécanismes cellulaires et moléculaires qui sous-tendent la mémoire et l’apprentissage chez les mammifères sont incomplètement compris. Le rythme thêta de l’hippocampe constitue l’état « en ligne » de cette structure qui est cruciale pour la mémoire déclarative. Dans la région CA1 de l’hippocampe, les interneurones inhibiteurs LM/RAD démontrent des oscillations de potentiel membranaire (OPM) intrinsèques qui pourraient se révéler importantes pour la génération du rythme thêta. Des travaux préliminaires ont suggéré que le courant K+ I(A) pourrait être impliqué dans la génération de ces oscillations. Néanmoins, peu de choses sont connues au sujet de l’identité des sous-unités protéiques principales et auxiliaires qui soutiennent le courant I(A) ainsi que l’ampleur de la contribution fonctionnelle de ce courant K+ dans les interneurones. Ainsi, cette thèse de doctorat démontre que le courant I(A) soutient la génération des OPM dans les interneurones LM/RAD et que des protéines Kv4.3 forment des canaux qui contribuent à ce courant. De plus, elle approfondit les connaissances sur les mécanismes qui régissent les interactions entre les sous-unités principales de canaux Kv4.3 et les protéines accessoires KChIP1. Finalement, elle révèle que la protéine KChIP1 module le courant I(A)-Kv4.3 natif et la fréquence de décharge des potentiels d’action dans les interneurones. Nos travaux contribuent à l’avancement des connaissances dans le domaine de la modulation de l’excitabilité des interneurones inhibiteurs de l’hippocampe et permettent ainsi de mieux saisir les mécanismes qui soutiennent la fonction de l’hippocampe et possiblement la mémoire chez les mammifères. / Cellular and molecular mechanisms underlying learning and memory in mammals are incompletely understood. The theta rhythm in the hippocampus constitutes the « on-line » state of this structure which is crucial for declarative memory. In the CA1 hippocampal area, LM/RAD inhibitory interneurons exhibit intrinsic membrane potential oscillations (MPOs) that could be important for the generation of theta rhythm. Preliminary work suggested that K+ current I(A) could be involved in the generation of these oscillations. Nevertheless, little is known about the identity of the principal and auxiliary protein subunits underlying I(A) current and the extent of the functional contribution of this K+ current in hippocampal interneurons. Thus, this Ph.D. thesis shows that I(A) current underlies MPO generation in LM/RAD interneurons and that Kv4.3 proteins form channels that contribute to this current. Also, it deepens the knowledge on the mechanism controlling the interactions between Kv4.3 channel-forming principal subunits and KChIP1 auxiliary proteins. Finally, it reveals that KChIP1 modulates native I(A)-Kv4.3 current and the action potential discharge frequency in interneurons. Our work takes part in advancing the knowledge on the field of modulation of excitability in hippocampal inhibitory interneurons and allows a better understanding of the mechanisms underlying the function of the hippocampus and possibly memory in mammals.
5

Recherche et études de marqueurs précoces permettant de déterminer l'état de fraicheur de filets de poissons / Research and early marker studies to determine the state of fish fillet freshness

Cléach, Jérôme 17 December 2018 (has links)
La fraîcheur est un paramètre clé de la qualité du poisson. Les méthodes actuelles appliquées en routine pour déterminer la fraîcheur du poisson ne sont pas applicables à toutes les espèces et reflètent davantage un début d'altération du produit. Ainsi, la recherche d'indicateurs précoces de fraîcheur du poisson représente encore un défi majeur et d'actualité dans l'industrie de la pêche. Le but de ces travaux de thèse était de démontrer que les fonctions et l'intégrité mitochondriales étaient susceptibles de constituer des indicateurs précoces de la fraîcheur de filets de poisson. En effet, la mitochondrie est la "centrale" énergétique de la cellule eucaryote et joue un rôle clef dans les mécanismes de mort cellulaire tels que l'apoptose et la nécrose. Les fonctions et l'intégrité mitochondriales de cellules musculaires de filets de poisson ont été étudiées à différents temps de conservation post mortem à 4°C. Le modèle d'étude était la daurade royale (Sparus aurata) (lignée cellulaire de fibroblastes (SAF-1) et muscles de poisson). Dans un premier temps, la structure des mitochondries de poisson a été étudiée par microscopie électronique à transmission. De nombreuses dégradations de la structure des mitochondries ont été observées dans les filets à partir de 72 heures (J3) de conservation à 4°C. Ces altérations se sont accentuées à J4 et J6. La fonctionnalité des mitochondries a ensuite été évaluée selon deux approches : la respiration mitochondriale (oxygraphie) et le potentiel membranaire mitochondrial (ΔΨₘ) estimé avec la sonde fluorescente Rhodamine 123. A partir de 96 heures de conservation à 4°C (J4), ces deux paramètres ont été significativement impactés témoignant d'une altération des fonctions et de l'intégrité mitochondriales.Ces résultats sont ainsi en corrélation avec l'altération structurale observée par microscopie. En parallèle, une méthode d'évaluation du potentiel membranaire a été développée avec un fluorimètre à microvolume à partir d'un modèle bactérien puis de mitochondries isolées. Ces travaux de thèse ont démontré que l'étude des fonctionnalités mitochondriales constitue un marqueur fiable et précoce de la fraîcheur des filets de poisson. Des connaissances supplémentaires sur les mécanismes cellulaires post mortem ont également été apportées. Ces résultats constituent ainsi le point de départ pour le développement d'un kit d'évaluation de la fraîcheur et ouvrent la voie pour la recherche de marqueurs de fraîcheur et de congélation/décongélation basés sur les fonctionnalités et intégrité mitochondriales. / Freshness is a key parameter of fish quality. Current routine techniques to determine fish freshness are not applicable to all species and reflect a late stage of alteration. Thus, research on early indicators of fish freshness still represents a major and topical challenge in fishing industry. This PhD research project aimed to demonstrate that mitochondrial functions and integrity constitute early indicators of fish fillet freshness. Mitochondria are the powerhouse of the cell and play a central role in cell death mecanisms such as apoptosis and necrosis. Mitochondrial function and integrity in fish filet muscle cells were studied at different times of storage post mortem at 4°C. The species studied as a model was the gilthead seabream (Sparus aurata) (gilthead seabream fibroblast cell line (SAF-1) and fish fillets). Firstly, the structure of fish mitochondria was studied by transmission electron microscopy. Numerous mitochondrial structural alterations have been observed in fish fillet from 72 hours (D3) of storage at 4°C. These alterations were more pronounced at D4 and D6. Then, mitochondrial functionality was assessed with two approaches: mitochondrial respiration (oxygraphy) and mitochondrial membrane potential (ΔΨₘ) estimated with the fluorescent probe Rh123. From 96 hours of storage at 4°C (D4), these two parameters were significantly disrupted demonstrating the alteration of mitochondrial function and integrity. The results are in correlation with the mitochondrial structural alterations described by microscopy. In parallel, a method of mitochondrial membrane potential evaluation has been developed with a micro-volume fluorimeter, first using bacteria and then isolated mitochondria. This work demonstrated that the mitochondrial functionality study constitutes a reliable and early fish filet freshness indicator. Additional knowledge on cell mechanisms in post mortem condition has been brought. These results constitute the starting point for the development of a fish freshness assay kit and pave the way to research on others freshness and freeze-thawing indicators based on mitochondrial integrity and functionality.
6

Base moléculaire et rôle du courant potassique transitoire I(A) des interneurones de l'hippocampe chez le rongeur

Bourdeau, Mathieu 05 1900 (has links)
Les mécanismes cellulaires et moléculaires qui sous-tendent la mémoire et l’apprentissage chez les mammifères sont incomplètement compris. Le rythme thêta de l’hippocampe constitue l’état « en ligne » de cette structure qui est cruciale pour la mémoire déclarative. Dans la région CA1 de l’hippocampe, les interneurones inhibiteurs LM/RAD démontrent des oscillations de potentiel membranaire (OPM) intrinsèques qui pourraient se révéler importantes pour la génération du rythme thêta. Des travaux préliminaires ont suggéré que le courant K+ I(A) pourrait être impliqué dans la génération de ces oscillations. Néanmoins, peu de choses sont connues au sujet de l’identité des sous-unités protéiques principales et auxiliaires qui soutiennent le courant I(A) ainsi que l’ampleur de la contribution fonctionnelle de ce courant K+ dans les interneurones. Ainsi, cette thèse de doctorat démontre que le courant I(A) soutient la génération des OPM dans les interneurones LM/RAD et que des protéines Kv4.3 forment des canaux qui contribuent à ce courant. De plus, elle approfondit les connaissances sur les mécanismes qui régissent les interactions entre les sous-unités principales de canaux Kv4.3 et les protéines accessoires KChIP1. Finalement, elle révèle que la protéine KChIP1 module le courant I(A)-Kv4.3 natif et la fréquence de décharge des potentiels d’action dans les interneurones. Nos travaux contribuent à l’avancement des connaissances dans le domaine de la modulation de l’excitabilité des interneurones inhibiteurs de l’hippocampe et permettent ainsi de mieux saisir les mécanismes qui soutiennent la fonction de l’hippocampe et possiblement la mémoire chez les mammifères. / Cellular and molecular mechanisms underlying learning and memory in mammals are incompletely understood. The theta rhythm in the hippocampus constitutes the « on-line » state of this structure which is crucial for declarative memory. In the CA1 hippocampal area, LM/RAD inhibitory interneurons exhibit intrinsic membrane potential oscillations (MPOs) that could be important for the generation of theta rhythm. Preliminary work suggested that K+ current I(A) could be involved in the generation of these oscillations. Nevertheless, little is known about the identity of the principal and auxiliary protein subunits underlying I(A) current and the extent of the functional contribution of this K+ current in hippocampal interneurons. Thus, this Ph.D. thesis shows that I(A) current underlies MPO generation in LM/RAD interneurons and that Kv4.3 proteins form channels that contribute to this current. Also, it deepens the knowledge on the mechanism controlling the interactions between Kv4.3 channel-forming principal subunits and KChIP1 auxiliary proteins. Finally, it reveals that KChIP1 modulates native I(A)-Kv4.3 current and the action potential discharge frequency in interneurons. Our work takes part in advancing the knowledge on the field of modulation of excitability in hippocampal inhibitory interneurons and allows a better understanding of the mechanisms underlying the function of the hippocampus and possibly memory in mammals.
7

Effets des toxines insecticides du Bacille de Thuringe sur la perméabilité des vésicules de membrane à bordure en brosse intestinale du sphinx du tabac

Kirouac, Martin January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
8

Rôle fonctionnel des canaux potassiques activés par le calcium au sein de progéniteurs cardiaques : implication en médecine régénérative

Vigneault, Patrick 04 1900 (has links)
L'insuffisance cardiaque (IC) est un processus progressif et inexorable menant au remodelage pathologique du cœur et à la destruction du parenchyme cardiaque. Indépendamment de l'étiologie, on observe une diminution d'environ 30% du nombre de cardiomyocytes ventriculaires au stade terminal de la maladie. Reposant sur les données précliniques convergentes dans les modèles d'IC, le concept novateur de thérapie cellulaire a suscité beaucoup d’espoir en cardiologie. Bien que leur rôle dans l'homéostasie cardiaque soit controversé, les progéniteurs cardiaques endogènes (eCPCs) qui perdurent au sein du myocarde adulte possèderaient les caractéristiques optimales en vue de la régénération myocardique. Nos données électrophysiologiques montrent que le courant potassique dépendant du Ca2+ de conductance intermédiaire (IKCa3.1) est dominant et qu'il contribue à la détermination du potentiel membranaire (Vmem). L'hyperpolarisation engendrée par l'activation du canal KCa3.1 (SK4; KCNN4) maintient le gradient électrique et favorise l'entrée capacitive de Ca2+ (ECC). D'un point de vue fonctionnel, la potentialisation de la signalisation calcique intracellulaire induite par KCa3.1 semble cruciale pour la prolifération des eCPCs c-Kit+. Puisque le statut clinique est connu pour avoir des conséquences néfastes sur la fonctionnalité des cellules souches, nous avons comparé la densité du courant IKCa3.1 dans des eCPCs c-Kit+ provenant de cœurs sains et insuffisants. En accord avec les données électrophysiologiques, nos résultats démontrent que l'insuffisance cardiaque congestive (CHF) diminue significativement l'expression de KCa3.1 ainsi que des protéines régulatrices du cycle cellulaire. Les cellules souches dérivées d'explants cardiaques (EDCs) représentent un autre produit cellulaire prometteur pour la thérapie cellulaire en cardiologie. Les EDCs se composent de sous-populations complémentaires dont la proportion varie en fonction du statut clinique. Alors que la population CD90- constitue la fraction active en termes d'efficacité thérapeutique, il a été démontré qu'une proportion élevée de cellules CD90+ réduit le potentiel régénératif des EDCs. Afin de faire la lumière sur les déterminants ioniques de la thérapie cellulaire cardiaque, les propriétés électrophysiologiques des populations CD90+ et CD90- ont été comparées. Considérant l'importance de KCa3.1 pour la fonction des eCPCs c-Kit+, la présence de canaux potassiques Ca2+-dépendants (KCa) dans les EDCs a été investiguée. Nous avons identifié 2 types de canaux KCa dans les EDCs humaines. Le canal KCa1.1 (BKCa; KCNMA1) est exprimé de façon homogène alors que KCa3.1 est présent exclusivement dans les cellules CD90-. D'un point de vue fonctionnel, l'activité du canal KCa3.1 détermine le Vmem et supporte la prolifération des EDCs. Puisque ce canal est présent uniquement dans la population cardiogénique, l'expression de KCa3.1 pourrait être un facteur déterminant de la capacité régénérative des EDCs. Nous avons investigué cette hypothèse et confirmé que la transplantation de cellules génétiquement modifiées pour exprimer le canal KCa3.1 augmente la régénération cardiaque dans un modèle murin d'IC d'origine ischémique. Pour la première fois, nous avons fait la démonstration que la modulation des propriétés ioniques de cellules souches peut améliorer leur efficacité thérapeutique. / Heart failure (HF) is a progressive disease characterized by extensive pathological remodelling of the heart and myocardial damage. Regardless of the etiology, a decrease of about 30% in the number of ventricular cardiomyocytes is observed at the terminal stage of HF. Based on converging preclinical data in HF models, the innovative concept of cell therapy has generated a great deal of enthusiasm in cardiology. Although the role of cardiac stem cells in cardiac homeostasis is highly controversial, the multipotent progenitors that persist within the adult myocardium possess the ideal characteristics for cardiac regeneration, especially because of their cardiogenic committment. Plasma membrane ion channels are involved in the fundamental processes of virtually all cells that make up the human body, including stem cells. A wide range of functional ion channels was identified in ex vivo proliferated endogenous cardiac progenitor cells (eCPCs), but their function remains poorly understood. We have completed the very first characterization of the ionic profile of freshly-isolated c-Kit+ eCPCs. We found that the intermediate conductance Ca2+-activated potassium current (IKCa3.1) is the predominant conductance and contributes to the determination of membrane potential (Vmem). The hyperpolarization generated by the activation of the KCa3.1 channel (SK4; KCNN4) maintains the electrical gradient and promotes store-operated Ca2+-entry (SOCE) that activates progenitor cell proliferation. Experimental congestive heart failure (CHF) significantly decreased the expression of KCa3.1 as well as cell cycle regulatory proteins. Taken together, these findings suggest that alterations in KCa3.1 may have pathophysiological and therapeutic significance in regenerative medicine In addition to c-Kit+ eCPCs, cardiac explants-derived cells (EDCs) represent another promising cell product for myocardial repair. EDCs are obtained as a heterogeneous mixture composed of complementary subpopulations. Interestingly, it was found that a high proportion of CD90+ cells reduce the functional benefits of EDCs therapy. Consistent with this observation, it has recently been shown that the CD90- population constitutes the active fraction in terms of therapeutic efficacy. In order to gain insight into the ionic determinants of EDCs function, the electrophysiological properties of the CD90+ and CD90- populations were studied. Considering the importance of KCa3.1 in c-Kit+ CPCs, we evaluated the presence of KCa channels in human EDCs. We have identified 2 types of KCa channels in ex vivo expanded EDCs. While KCa1.1 (BKCa; KCNMA1) channel was homogeneously expressed in both subpopulations, KCa3.1 was found exclusively in the CD90- cell fraction. Similar to our previous observations in freshly isolated c-Kit+ eCPCs, KCa3.1 was responsible for the determination of Vmem under resting conditions and during SOCE. Importantly, we demonstrated that transplantation of genetically-modified EDCs to over-express KCNN4 potentiates cardiac regeneration in a murine model of ischemic cardiomyopathy. This study provides the first evidence in the literature that modulating the activity of a single plasma membrane ion channel can truly improves the therapeutic efficacy of progenitor cells.
9

Role of K+ and CL- channels in modulating electromechanical activity in vascular smooth muscle

Remillard, Carmelle V. 04 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l’Université de Montréal / Les canaux ioniques présents dans la membrane des cellules musculaires lisses vasculaires, et surtout des cellules retrouvées au niveau des artères de résistance, jouent des rôles prépondérants dans le contrôle du potentiel membranaire et de la contractilité vasculaire. Nos deux études ont porté sur l) les propriétés biophysiques et pharmacologiques des canaux potassiques (K+) et 2) les propriétés fonctionnelles des canaux perméables au chlore (Cl') dans la régulation de l'activité électromécanique des cellules artérielles. Dans la première partie de cette thèse, nous décrivons le mécanisme de l'interaction entre la 4-aminopyridine et un courant K+ sortant à rectification retardée (Kdr) dans des cellules d'artères coronaires de conductance de lapin. Parmi les multiples canaux K identifies au niveau des cellules musculaires lisses vasculaires, Kdr joue un rôle majeur dans le maintien du potentiel membranaire de repos entre -70 et -40 mV. La 4-aminopyridine (4- AP) est un inhibiteur relativement spécifique du canal Kdr et a été utilisée abondamment pour caractériser ses propriétés biophysiques et son rôle physiologique. Malgré son usage répandu, on ne connaît pas la nature de l'interaction entre la 4-AP et le canal Kdr concernant les canaux Kdr, nous estimons que le canal Kdr coronaire est possiblement un hétéro-multimère de plusieurs sous-unités fonctionnelles a et modulatrices P. Le but de notre deuxième étude a été d'évaluer le rôle des canaux Cl' dans la contraction vasculaire induite par la stimulation des récepteurs αi-adrénergiques, et de mesurer l'influence de changements de la pression transmurale sur cette réponse. Malgré l'importance des canaux calciques de type L (CaL) dans la contraction vasculaire, des études récentes suggèrent que deux canaux perméables au Cl' dépendants du Ca2+ intracellulaire (CICa) ou sensibles aux changements de volume (Clvol) sont impliqués, respectivement, dans la dépolarisation et contraction engendrées par certains agonistes vasoconstricteurs ou lors d'une élévation de la pression transmurale ("réponse myogénique"), propriété à laquelle on attribue un rôle important dans les mécanismes d'autorégulation dans plusieurs lits vasculaires. En condition isobarique, nous avons évalué le rôle des canaux Cl' dans les réponses αi-adrénergique (stimulée par la phényléphrine - PE) et myogénique des artérioles (70 -100 pm diamètre interne) mésentériques de lapin. Nos observations nous ont permis de tirer les conclusions suivantes. i) La PE cause une vasoconstriction liée à l'activation des canaux CICaet CaL. ii) L'acide niflumique (NfA) ou le 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) ne modifie pas la contraction induite par l'activation des canaux CaL. iii) La dilatation induite par l'inhibition de dca par la NfA est dépendante de la pression pour des concentrations faibles et modérées (0.5 à 1 µM) de l'agoniste PE. iv) L'étirement de la paroi causée par une hausse de la pression transmurale active possiblement un courant sensible au DIDS qui "masque" en partie la vasoconstriction induite par la PE attribuée à l'activité des canaux CICa. v) La dépolarisation induite par la PE est renversée complètement par la NfA. vi) Le courant sensible au DIDS contribue à la réponse myogénique. Ces travaux mettent donc en évidence l'importance physiologique des canaux Cl' dans la dépolarisation et la contraction de la microcirculation mésentérique associées à la stimulation par le système nerveux autonome sympathique dans des conditions normales de pression transmurale.

Page generated in 0.0854 seconds