• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conversion CSG-BRep de scènes définies par des quadriques

Pentcheva, Maria 30 September 2010 (has links) (PDF)
L'objet de cette thèse porte sur la conversion d'un modèle CSG vers un modèle BRep d'une scène définie par des quadriques. Cet algorithme est composé de quatre étapes : (i) le paramétrage de chaque courbe d'intersection entre quadriques ; (ii) la détermination des points d'intersection entre au moins trois quadriques ; (iii) la détection des segments ainsi obtenus qui bornent une face du modèle BRep sur chacune des quadriques séparément ; (iv) l'identification et le regroupement des chaînes de segments qui délimitent une même face sur chaque quadrique séparément (certaines faces peuvent avoir des <>, et par conséquent être constituées par au moins deux chaînes de segments). Les deux premières étapes ont été résolues grâce à deux algorithmes de la littérature. Les deux étapes restantes sont traitées par des algorithmes que nous avons conçus : respectivement VE (Visible Edges) et CA (Chains Assembling). Notre algorithme est robuste au sens où tous les cas dégénérés sont traités dans le paradigme du calcul géométrique exact. Il résout intégralement le problème de conversion CSG-BRep de scènes définies par des quadriques. Sa complexité dans le pire des cas s'élève à $O(n^4)$ où $n$ est le nombre de quadriques. Une implantation partielle a été effectuée et des tests préliminaires réalisés.
2

Algèbre linéaire exacte efficace : le calcul du polynôme caractéristique

Pernet, Clément 27 September 2006 (has links) (PDF)
L'algèbre linéaire est une brique de base essentielle du calcul scientifique. Initialement dominée par le calcul numérique, elle connaît depuis les dix dernières années des progrès considérables en calcul exact. Ces avancées algorithmiques rendant l'approche exacte envisageable, il est devenu nécessaire de considérer leur mise en pratique. Nous présentons la mise en oeuvre de routines de base en algèbre linéaire exacte dont l'efficacité sur les corps finis est comparable celles des BLAS numériques. Au délà des applications propres au calcul exact, nous montrons qu'elles offrent une alternative au calcul numérique multiprécision pour la résolution de certains problèmes numériques mal conditionnés.<br /><br />Le calcul du polynôme caractéristique est l'un des problèmes classiques en algèbre linéaire. Son calcul exact permet par exemple de déterminer la similitude entre deux matrices, par le calcul de la forme normale de Frobenius, ou la cospectralité de deux graphes. Si l'amélioration de sa complexité théorique reste un problème ouvert, tant pour les méthodes denses que boîte noire, nous abordons la question du point de vue de la praticabilité : des algorithmes adaptatifs pour les matrices denses ou boîte noire sont dérivés des meilleurs algorithmes existants pour assurer l'efficacité en pratique. Cela permet de traiter de façon exacte des problèmes de dimensions jusqu'alors inaccessibles.
3

Algèbre linéaire exacte, parallèle, adaptative et générique / Adaptive and generic parallel exact linear algebra

Sultan, Ziad 17 June 2016 (has links)
Les décompositions en matrices triangulaires sont une brique de base fondamentale en calcul algébrique. Ils sont utilisés pour résoudre des systèmes linéaires et calculer le rang, le déterminant, l'espace nul ou les profiles de rang en ligne et en colonne d'une matrix. Le projet de cette thèse est de développer des implantations hautes performances parallèles de l'élimination de Gauss exact sur des machines à mémoire partagée.Dans le but d'abstraire le code de l'environnement de calcul parallèle utilisé, un langage dédié PALADIn (Parallel Algebraic Linear Algebra Dedicated Interface) a été implanté et est basé essentiellement sur des macros C/C++. Ce langage permet à l'utilisateur d'écrire un code C++ et tirer partie d’exécutions séquentielles et parallèles sur des architectures à mémoires partagées en utilisant le standard OpenMP et les environnements parallel KAAPI et TBB, ce qui lui permet de bénéficier d'un parallélisme de données et de taches.Plusieurs aspects de l'algèbre linéaire exacte parallèle ont été étudiés. Nous avons construit de façon incrémentale des noyaux parallèles efficaces pour les multiplication de matrice, la résolution de systèmes triangulaires au dessus duquel plusieurs variantes de l'algorithme de décomposition PLUQ sont construites. Nous étudions la parallélisation de ces noyaux en utilisant plusieurs variantes algorithmiques itératives ou récursives et en utilisant des stratégies de découpes variées.Nous proposons un nouvel algorithme récursive de l'élimination de Gauss qui peut calculer simultanément les profiles de rang en ligne et en colonne d'une matrice et de toutes ses sous-matrices principales, tout en étant un algorithme état de l'art de l'élimination de Gauss. Nous étudions aussi les conditions pour qu'un algorithme de l'élimination de Gauss révèle cette information en définissant un nouvel invariant matriciel, la matrice de profil de rang. / Triangular matrix decompositions are fundamental building blocks in computational linear algebra. They are used to solve linear systems, compute the rank, the determinant, the null-space or the row and column rank profiles of a matrix. The project of my PhD thesis is to develop high performance shared memory parallel implementations of exact Gaussian elimination.In order to abstract the computational code from the parallel programming environment, we developed a domain specific language, PALADIn: Parallel Algebraic Linear Algebra Dedicated Interface, that is based on C/C + + macros. This domain specific language allows the user to write C + + code and benefit from sequential and parallel executions on shared memory architectures using the standard OpenMP, TBB and Kaapi parallel runtime systems and thus providing data and task parallelism.Several aspects of parallel exact linear algebra were studied. We incrementally build efficient parallel kernels, for matrix multiplication, triangular system solving, on top of which several variants of PLUQ decomposition algorithm are built. We study the parallelization of these kernels using several algorithmic variants: either iterative or recursive and using different splitting strategies.We propose a recursive Gaussian elimination that can compute simultaneously therow and column rank profiles of a matrix as well as those of all of its leading submatrices, in the same time as state of the art Gaussian elimination algorithms. We also study the conditions making a Gaussian elimination algorithm reveal this information by defining a new matrix invariant, the rank profile matrix.
4

De la géométrie algorithmique au calcul géométrique

Pion, Sylvain 19 November 1999 (has links) (PDF)
Dans cette thèse, nous définissons des méthodes efficaces et génériques<br /> dans le but de résoudre les problèmes de robustesse que pose la géométrie algorithmique,<br /> en se concentrant principalement sur l'évaluation exacte des prédicats<br /> géométriques.<br /> Nous avons exploré des méthodes basées sur l'arithmétique<br /> modulaire, ce qui nous a conduits à mettre au point des algorithmes simples<br /> et efficaces de reconstruction du signe dans cette représentation des<br /> nombres.<br /> Nous avons également mis au point de nouveaux types de filtres<br /> arithmétiques qui permettent d'accélérer<br /> le calcul des prédicats exacts, en contournant le coût des solutions<br /> traditionnelles basées sur des calculs multi-précision génériques.<br /> Nos méthodes sont basées sur l'utilisation de l'arithmétique<br /> d'intervalles, qui permet une<br /> utilisation souple et efficace, combinée à un outil de génération<br /> automatique de code des prédicats.<br /> Ces solutions sont maintenant disponibles dans la bibliothèque<br /> d'algorithmes géométriques CGAL.
5

Décomposition algorithmique des graphes

Mazoit, Frédéric 16 December 2004 (has links) (PDF)
Dans cette thèse, nous nous intéressons à deux types de décompositions des graphes introduits par Robertson et Seymour: les décompositions arborescentes et les décompositions en branches. À ces décompositions sont associés deux paramètres des graphes: la largeur arborescente et la largeur de branches. Nous montrons que ces deux décompositions peuvent être vues comme issues d'une même structure combinatoire; les deux paramètres mentionné ci-dessus sont égaux aux valeurs minimales de deux paramètres de cette structure commune. En poussant plus avant cette analogie, nous montrons comment adapter une technique de calcul de la largeur arborescente au calcul de la largeur de branches. Ceci nous permet de calculer la largeur de branches des graphes de nombre astéroïde borné ayant un nombre polynômial de séparateurs minimaux et celle des graphes d-trapézoïdes circulaires. Ce parallèle nous permet aussi d'adapter certains résultats structurels sur les décompositions en branches aux décompositions arborescentes. Dans le cas des graphes planaires, nous interprétons ces propriétés à l'aide d'outils topologiques. De cette façon, nous donnons une démonstration simple d'un théorème de dualité reliant la largeur arborescente d'un graphe planaire et celle de son dual. Ces outils nous permettent aussi d'énumérer de façon efficace les séparateurs minimaux des graphes planaires.

Page generated in 0.0443 seconds