• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implication des canaux Cav3.2 dans l'effet antalgique du paracétamol et dans la douleur inflammatoire / Involvement of Cav3.2 channels in the analgesic effect of paracetamol and inflammatory pain

Kerckhove, Nicolas 20 September 2013 (has links)
Le paracétamol est l'antalgique le plus consommé au monde et pourtant son mécanisme d'action n'est toujours pas élucidé. Longtemps reconnu comme un produit proche des anti-inflammatoires non stéroïdiens (AINS) son profil est aujourd'hui reconsidéré grâce aux travaux effectués depuis une dizaine d'années. Il est désormais admis que le paracétamol est un antalgique d'action prioritairement cérébrale et l'impact sur les cyclo-oxygénases, cibles traditionnelles des AINS, ne représente plus la base de son mécanisme d'action. Nos travaux de thèse montrent que l'action antalgique du paracétamol est perdue chez des animaux dont le canal Cav3.2 a été invalidé, ceci dans divers contextes expérimentaux. Ainsi ces canaux semblent être indispensables à l'effet antalgique du paracétamol. Nous avons également démontré le site de cette implication. En effet, seuls les canaux Cav3.2 cérébraux sont impliqués dans l'effet du paracétamol, ce qui rejoint les résultats précédents qui présentent le paracétamol comme un antalgique d'action centrale. Au niveau cérébral nous avons aussi démontré que les canaux Cav3.2 agissaient de concert avec deux acteurs primordiaux pour l'effet du paracétamol : l'AM404, son métabolite actif et les récepteurs TRPV1. La finalité de cette relation est l'inhibition des canaux Cav3.2 qui induit l'effet antalgique du paracétamol. Parallèlement, nous avons démontré pour la première fois que l'inhibition des canaux Cav3.2 cérébraux induisait une antalgie. Ceci confirme l'implication tonique de ces canaux supra-spinaux dans la perception douloureuse. Enfin, nous avons également démontré que les canaux Cav3.2 étaient fortement impliqués dans la douleur de type inflammatoire et, de manière plus surprenante et intéressante, dans les processus inflammatoires associés (développement oedémateux et production des médiateurs pro-inflammatoires). En conformité avec ces résultats, nous avons démontré que l'éthosuximide (un bloqueur des canaux Cav3.2) était efficace dans le traitement des douleurs inflammatoires et de l'inflammation ainsi que sur leurs comorbidités associées (anxiété et dépression). En conclusion, la confirmation de l'implication des canaux Cav3.2 dans l'effet du paracétamol et dans la douleur inflammatoire ouvre une voie nouvelle dans la compréhension du mécanisme d'action de cet antalgique et dans la conception et le développement de nouveaux antalgiques, ciblant ces canaux. Cette perspective est renforcée par les démonstrations déjà faites du rôle de ces canaux dans la physiopathologie des douleurs neuropathiques. De plus et de façon intéressante, l'éthosuximide, un antiépileptique utilisé chez l'homme et inhibiteur des canaux Cav3, permet d'envisager la réalisation d'une étude clinique pilote sur l'évaluation de son effet antalgique. Nous proposons le protocole de cette étude, preuve de concept, réalisée dans un premier temps chez des patients atteints de douleurs neuropathiques. / Acetaminophen is the most analgesic consumed worldwide, but its mechanism of action is still not understood. Long recognized as non-steroidal anti-inflammatory drugs (NSAIDs), its profile is now reconsidered thanks to the work done over the last ten years. It is now accepted that acetaminophen is an analgesic with a central action and the impact on cyclooxygenase, traditional targets of NSAIDs, is no longer the basis of its mechanism of action. This work show that the analgesic effect of acetaminophen is lost in animals whose Cav3.2 channel has been invalidated, this in various experimental contexts. Thus, these channels appear to be essential for the analgesic effect of acetaminophen. We also demonstrated the nature of that involvement. Indeed, only the brain Cav3.2 channels are involved in the effect of acetaminophen, which joined the previous results showing that acetaminophen is a centrally acting analgesic. In the brain, we also demonstrated that Cav3.2 channels acting in concert with two crucial actors to the effect of acetaminophen: AM404, its active metabolite, and TRPV1 receptors. The purpose of this relationship is the inhibition of Cav3.2 channels that induces analgesic effect of acetaminophen. In parallel, we have demonstrated for the first time that inhibition of brain Cav3.2 channels induced analgesia. This confirms the tonic involvement of these channels in supraspinal pain perception. Finally, we also demonstrated that Cav3.2 channels were heavily involved in the inflammatory pain and, more surprising and interesting, in inflammatory processes associated (edema development and production of pro-inflammatory mediators). Related to these results, we demonstrated that ethosuximide (a Cav3.2 channel blocker) was effective in the treatment of inflammatory pain and inflammation as well as their associated comorbidities (anxiety and depression). In conclusion, the confirmation of the interaction of Cav3.2 channels in the effect of acetaminophen and pain perception opens a new path in understanding the mechanism of action of acetaminophen and in the design and development of new analgesics targeting Cav3.2 channels. This perspective is reinforced by the demonstrations previously done of the role of these channels in the pathophysiology of neuropathic pain. More and interestingly, ethosuximide, an antiepileptic drug used in humans and Cav3 channels inhibitor, allows to consider the realization of a pilot clinical study on the evaluation its antalgic effect. We propose the protocol of this study, proof of concept, performed in a first time in patients of neuropathic pain.
2

Les CTR2 et CTR2, deux formes clivées du récepteur à l'inositol 1,4,5-trisphosphate, créent des canaux calciques constitutivement actifs

Mallet, Alexandre January 2011 (has links)
Lors de l'activation de l'apoptose, une multitude de protéines sont clivées. Parmi celles-ci, on retrouve le récepteur à l'inositol 1,4,5-trisphosphate (IP[indice inférieur 3] R) qui est clivé par la caspase-3 au niveau du domaine de régulation, tout juste avant le domaine du pore calcique. L'IP[indice inférieur 3] R est un récepteur-canal situé à la membrane du réticulum endoplasmique et joue un rôle crucial dans la régulation du Ca[indice supérieur 2+] intracellulaire. Le fragment issu du clivage par la caspase-3 aurait la particularité de créer des canaux calciques constitutivement actifs. La présence de ces canaux provoquerait un débalancement dans l'homéostasie calcique, essentielle à la survie et au maintien de la cellule. En dirigeant l'expression de ce fragment dans des cellules ciblées, tel que les cellules cancéreuses, la perturbation de l'homéostasie calcique pourrait être suffisamment importante pour activer les voies apoptotiques. Nous avons voulu caractériser le débalancement calcique provoqué par le fragment du récepteur à l'IP[indice inférieur 3] (CTR). Pour ce faire, nous avons créé les fragments CTR1 et CTR2, correspondant aux formes de l'IP[indice inférieur 3] R-1 et de l'IP[indice inférieur 3] R-2, respectivement, tronqués au début du domaine canal. Nous avons montré l'expression du CTR1 et du CTR2 au niveau du réticulum endoplasmique ainsi que leur capacité à former des homo- et hétérodimères avec d'autres CTRs et avec les IP [indice inférieur 3] Rs endogènes de la cellule. L'évaluation du contenu calcique du réticulum endoplasmique a révélé que les CTR1 et CTR2 forment des canaux calciques constitutivement actifs, mais que leur impact sur l'homéostasie calcique ne semble pas affecter la cellule. Ces résultats montrent donc que les CTR1 et CTR2 ne sont pas des bons candidats pour moduler les niveaux calciques du réticulum endoplasmique.
3

Interactions fonctionnelles et moléculaires de la cavéoline-3 et du canal calcique de type L dans les cellules musculaires squelettiques

Couchoux, Harold 13 July 2007 (has links) (PDF)
La cavéoline (Cav) est une protéine dite « de scaffolding » présente dans les cavéoles. La Cav-3, isoforme majeure du muscle strié, aurait un rôle dans l'homéostasie calcique du muscle squelettique. Notre but était de caractériser les interactions entre la Cav-3 et le canal calcique voltage-dépendant de type L. Nous avons tout d'abord étudié les conséquences d'une déficience en Cav-3 suite à l'expression du mutant pathologique Cav-3P104L. Nos résultats indiquent que l'expression de Cav-3P104L i) réduit spécifiquement la conductance des canaux de type L dans des myotubes squelettiques primaires, des fibres fœtales en survie et adultes, ii) entraîne une réduction significative de l'expression membranaire du canal de type L. De plus, nous avons montré que la Cav-3 et le canal de type L sont colocalisés à la membrane plasmique et dans des extraits musculaires. Enfin, des expériences d'interaction in vitro suggèrent une interaction moléculaire directe entre ces deux protéines.
4

Rat protease-activated receptor–1 (rPAR1) expression and characterization in Sf9 cells

Lavalle, Maria 07 1900 (has links)
Connue pour son rôle dans la cascade de coagulation, la thrombine, une protéase à sérine, peut également agir par l’intermédiaire de PAR1, un récepteur activé par protéase et couplé aux protéines G liant le GTP (GPCR). La thrombine se lie et clive l’extrémité N-terminale du PAR1 entre l’Arg41 et la Ser42, exposant une nouvelle extrémité terminale qui agit elle-même comme un ligand. La thrombine et une séquence peptidique de cinq acides aminés, composée des résidus Ser42 à Arg46, nommée PAR1-AP, déclenchent dans diverses cellules de mammifères une réponse intracellulaire comportant une composante calcique. Dans cette étude, le système d’expression par baculovirus dans les cellules Sf9 d'insecte nous a permis d'exprimer le récepteur PAR1 du rat à la surface de ces cellules et de réaliser son couplage fonctionnel à leur signalisation intracellulaire (modèle rPAR1-Sf9). La composante calcique de celle-ci, en réponse au PAR1-AP, a ensuite été étudiée en détail à l’aide de la sonde fluorescente Fura-2 et de plusieurs inhibiteurs agissant sur les canaux calciques ou d'autres éléments de la cascade de signalisation du calcium intracellulaire. Lorsque le milieu extracellulaire contient du calcium (Ca2+), la thrombine ou PAR1-AP déclenchent un signal calcique qui consiste en une augmentation rapide de [Ca2+]i suivi d’un plateau relativement soutenu, puis d'un retour lent vers le niveau de base initial. En l'absence de Ca2+ dans le milieu extracellulaire, l'augmentation initiale rapide de [Ca2+]i est suivie d'un retour rapide vers le [Ca2+]i de base. À l’aide d’inhibiteurs de canaux calciques, tels que le lanthane, la nifédipine et le D-600, l'entrée du calcium du milieu extracellulaire dans les cellules est inhibée, abolissant le plateau soutenu de [Ca2+]i. L’inhibition de la pompe Ca2+-ATPase par la thapsigargine supprime la réponse au PAR1-AP après épuisement des sites de stockage de Ca2+intracellulaire. Le TMB-8 agit de façon discordante quant à l’inhibition de la libération de Ca2+ des sites de stockage intracellulaires. La réponse à PAR1-AP n’est pas affectée par le D-609, un inhibiteur de la phospholipase β. L’inhibition de la protéine kinase C (PKC) par le bisindolylmaléimide induit des oscillations en présence de Ca2+ extracellulaire et atténue fortement le signal calcique en absence de Ca2+ extracellulaire. En présence de Ca2+ extracellulaire, l’activation de la PKC par le PBDu tronque le flux de [Ca2+]i tandis que la réponse calcique est abolie en absence de Ca2+ dans le milieu extracellulaire. Le H-89, un inhibiteur de la protéine kinase A (PKA), cause une prolongation de la durée du plateau de [Ca2+]i dans un milieu riche en calcium et la suppression de la réponse à PAR1-AP lorsque le milieu extracellulaire est dépourvu de Ca2+. Les résultats obtenus nous permettent de conclure que la PKC et possiblement la PKA jouent un rôle critique dans la mobilisation du Ca2+ induite par le PAR1-AP dans le modèle rPAR1-Sf9. / Thrombin’s serine protease activity allows for it to have a role in both the coagulation cascade as well as through a GTP- binding protein coupled receptor (GPCR) known as the protease-activated receptor-1 (PAR1). Thrombin binds to PAR1 at the N-terminal, cleaving between Arg41 and Ser42, and unmasking a new N-terminal which acts as a tethered ligand. Thrombin and a five amino acid peptide composed of the sequence of residues Ser42 to Arg46, known as PAR 1-AP, has been shown to mediate a number of signalling mechanisms in mammalian cells, including a calcium signalling pathway. In the present study, the Sf9-baculovirus system allowed us to express the rat PAR1 (rPAR1-Sf9) on the cell surface and study its intracellular signalling. The calcium (Ca2+) signal was studied using the fluorescent probe Fura-2, and several Ca2+ channel inhibitors and calcium signal modulators were used to study the signal induced by PAR1-AP. In the presence of extracellular calcium [Ca2+]e, thrombin and PAR1-AP produced a Ca2+ signal which consisted of an initial spike in [Ca2+]i followed by a relatively maintained plateau and a slow return towards baseline. In the absence of Ca2+ in the extracellular space, the initial Ca2+ increase is followed by a quick return to baseline [Ca2+]i. Ca2+ channel inhibitors, lanthanum, nifedipine and D-600, inhibited the entry of Ca2+ from the extracellular space and abolished the plateau phase of the response to PAR1-AP. Inhibition of the Ca2+-ATPase with thapsigargin abolished the response to PAR1-AP after having depleted the Ca2+ stores involved in the initial spike in [Ca2+]i. TMB-8, expected to inhibit the release of Ca2+ from internal stores, inconsistently inhibited the [Ca2+]i response to PAR1-AP. The response elicited by PAR1-AP was not affected by D-609, an inhibitor of phospholipase Cβ. Inhibition of protein kinase C (PKC) with bisindolylmaleimide induced oscillations in the [Ca2+]i levels in the presence of extracellular Ca2+ while it significantly blunted the response in the absence of extracellular Ca2+. PDBu activation of PKC truncated the [Ca2+]i surge in Ca2+-rich conditions while abolishing it altogether in the absence of extracellular Ca2+. H-89 inhibition of protein kinase A (PKA) prolonged the plateau duration in Ca2+-rich medium while inhibiting the response to PAR1-AP in a Ca2+-deficient environment. Taken together, our results suggest that PKC and possibly PKA play a critical role in the mobilisation of Ca2+ in rPAR1-Sf9 by PAR1-AP.

Page generated in 0.056 seconds