• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • Tagged with
  • 16
  • 16
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Le rôle de la cavéoline-3 sur une nouvelle mutation du canal sodique cardiaque NaV1.5 causant des arythmies associées à la mort subite

Ginjupalli, Vamsi Krishna Murthy 14 January 2022 (has links)
Les canaux sodiques cardiaques (NaV1.5), responsables de l'initiation et de la propagation des potentiels d'action cardiaque, Sont codés par le gène SCN5A. Des phénotypes d'arythmies variés et de gravité variable ont été associés jusqu'à présent aux mutations hétérozygotes de SCN5A, allant de modifications électrocardiographiques asymptomatiques (pouvant indiquer un phénotype léger) à des arythmies symptomatiques pouvant entraîner une syncope, un arrêt cardiaque et la mort subite. Les facteurs de risque pour la plupart des mutations de SCN5A sont encore à établir. L'objectif de la présente étude consiste à caractériser les propriétés biophysiques de la mutation du canal NaV1.5/A1148T en présence du polymorphisme Cav-3/G56S chez un patient ayant subi une mort subite cardiaque avortée. Pour évaluer le rôle de Cav-3 sur la fonction du canal NaV1.5, les canaux NaV1.5/WT et NaV1.5/A1148T ont été co-transfectés dans des cellules tsA201 avec Cav-3/WT ou Cav-3/G56S avec la sous-unité régulatrice β1. Les courants Na+ ont été enregistrés à l'aide de la technique de patch-clamp en configuration cellule entière et caractérisés biochimiquement et physiologiquement. Les cellules iPSCs provenant du patient ont été différenciées en cardiomyocytes et caractérisées biophysiquement. La co-expression de NaV1.5/A1148T avec Cav-3/WT ou Cav-3/G56S a entraîné des réductions significatives de la densité de courant, allant d'un cinquième de la valeur normative à une suppression complète de la densité de courant dans ces cellules. Les enregistrements des courants sodiques provenant des iPSC-CM ont confirmé la réduction de la densité de courant. Ces résultats suggèrent que la mutation A1148T pourrait être à l'origine de la pathologie même si le mécanisme moléculaire précis n'est pas encore élucidé. Notre découverte selon laquelle Cav-3 régule négativement la fonction du canal NaV1.5 en réduisant la densité de courant du canal a été confirmée à l'aide de deux lignées cellulaires différentes (tsA201 et HEK-293). / The cardiac Na⁺ channels (NaV1.5), responsible for initiation and propagation of cardiac action potentials, are encoded by the SCN5A gene. Various arrhythmia phenotypes of increasing severities have been associated to date with heterozygous SCN5A mutations, from asymptomatic electrocardiographic changes (which may indicate a mild phenotype) to symptomatic arrhythmias resulting in syncope, cardiac arrest, and sudden cardiac death. Risk factors for most of SCN5A mutations have yet to be established. The objective of the present study entails a characterization of the biophysical properties of the NaV1.5/A1148T channel mutation in the presence of the polymorphism Cav-3/G56S found in a patient with aborted sudden cardiac death. To investigate the role of Cav-3 on NaV1.5 channel function, NaV1.5/WT and NaV1.5/A1148T were co-transfected in tsA201 cells with either Cav-3/WT or the Cav-3/G56S along with β1 regulatory subunit. Na⁺ currents were recorded using the patch-clamp technique in whole-cell configuration and biochemically and physiologically characterized. Patient-specific iPSCs were differentiated into cardiomyocytes and biophysically characterized. Co-expression of NaV1.5/A1148T with Cav-3/WT or Cav-3/G56S resulted in significant reductions in current density, which ranged from one-fifth of the normative value to complete abolishment of current density in transfected cells. Na⁺ current recordings from iPSC-CMs confirmed the reduced current density. Those results suggest that the mutation, A1148T could cause the pathology even if the precise molecular mechanism is not unravelled yet. Our finding that Cav-3 negatively regulates NaV1.5 channel function by reducing Na channel current density were confirmed using two different cell lines (tsA201and HEK293).
12

Étude structure-fonction du pore du canal sodique dépendant du voltage et sa relation avec certaines pathologies cardiaques /

Carbonneau, Éric. January 2004 (has links)
Thèse (M.Sc.)--Université Laval, 2004. / Bibliogr.: f. 120-149. Publié aussi en version électronique.
13

Biophysical characterization of neuronal and skeletal muscle sodium channels, and their regulation by auxiliary beta subunits

Zhao, Juan 18 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2012-2013. / Les canaux Na dépendants du voltage sont responsables de la phase ascendante des potentiels d’action. Ils sont formés d’une sous-unité principale  et d’une ou plusieurs sous-unités secondaire . La sous-unité  seule est suffisante pour former un canal fonctionnel cependant, les sous-unités  modulent la location, l’expression ainsi que les propriétés fonctionnelles de la sous-unité . Ma thèse ce concentre sur 3 canaux Na neuronaux (Nav1.6, Nav1.7 et Nav1.8) ainsi qu’un canal sodique du muscle squelettique (Nav1.4). Les canaux Na neuronaux sont importants pour la propagation de l’influx électrique tout au long de l’axone. Nav1.7 et Nav1.8 sont les principales sous-unités exprimées dans les ganglions dorsaux. L’altération de l’expression et de la modulation de ces canaux suite à une lésion ou à l’inflammation, joue un rôle important dans la nociception et dans les douleurs chroniques. Nav1.6 est fortement concentré aux nœuds da Ranvier, il y tient un rôle important dans la conduction saltatoire et dans la répétition des potentiels d’action à hautes fréquences. Des mutations sur le canal Nav1.4 provoquent des canalopathies du muscle squelettique. Voici les questions qui ont guidé notre étude : 1) De quel façon les sous-unités  régulent les canaux Na neuronaux Nav1.7 et Nav1.8? 2) Quel anomalie biophysique est provoquée par la mutation M1476I, une mutation liée à l’effet fondateur sur le gène SCN4A qui provoque une myotonie douloureuse induite par le froid chez des Canadiens français? 3) Quels sont les propriétés biophysiques du courant persistant de Nav1.6? 4) Quel est le patron d’expression des sous-unités  et comment celles-ci régulent Nav1.7 dans les neurones de ganglions dorsaux? Afin de répondre à ces questions, plusieurs techniques ont été utilisées, notamment la technique du patch-clamp en configuration cellule entière et l’enregistrement des canaux unitaire sur des systèmes d’expression hétérologue, de la RT-PCR sur les cellules uniques, immunohistochimie et l’immunoprécipitations dans les neurones de ganglions dorsaux. Premièrement, nous avons utilisé la RT-PCR sur les cellules uniques sur des neurones dissociés de ganglions dorsaux pour identifier l’expression des sous unités 1-4 dans les neurones sensitifs de petits diamètres. Nos résultats indiques que les neurones expriment largement Nav1.6 et Nav1.8 et les sous unités 1-3. Pour étudier la régulation par les sous-unités , nous avons co-exprimés les canaux Na avec les sous-unités . La sous-unités 1 provoque une augmentation de la densité de courant de Nav1.8 lorsque co-exprimée dans des cellules HEK293 mais elle n’affecte pas la densité de courant de Nav1.6. Le domaine C-terminale de la sous-unité 1 est fortement impliqué dans la modulation de Nav1.8. Ces résultats proviennent de l’étude de l’effet de chimère 1/2 conservant différentes régions de la sous-unité 1 et de la sous-unité 2. Deuxièmement, nous avons étudié les anomalies biophysiques provoquées par la mutation M1471I de Nav1.4 en utilisant la technique du patch-clamp en mode configuration cellule entière sur des cellules tsA-201. La mutation provoque des effets similaires à d’autres mutations qui provoquent une myotonie aggravé par le potassium, incluant une augmentation du courant persistant, un ralentissement de la décroissance du courant, une dépolarisation de l’inactivation et une accélération de la récupération de l’état inactivé. Un abaissement de la température ralentit les cinétiques pour les canaux mutants et les canaux sauvages, mais il empire le défaut de l’inactivation de la mutation M1476I en augmentant l’amplitude du courant persistant. La mexiletine aide à soulager la myotonie causée par cette mutation en supprimant l’augmentation du courant persistant. Cependant, la mexiletine à une efficacité réduite sur le bloque utilisation-dpendant des canaux mutés M1476I et elle est associée à une récupération plus rapide du bloque provoqué par la mexiletine sur les canaux mutants. Troisièmement, nous avons caractérisé les propriétés du courant persistant de Nav1.6 en mode cellule entière et en courant unitaire dans des cellules HEK293 exprimant ce canal. Nous avons noté que le courant persistant de Nav1.6 est sensible à la composition du milieu intracellulaire et que l’utilisation de CsF au lieu de CsCl rendait ce courant rarement détectable. En substituant le CsF par du CsCl, nous avons montré que l’amplitude du courant persistant de Nav1.6 en mode cellule entière est de 3 à 5% du courant transitoire. Cette amplitude est similaire au ratio observé entre le maximum de probabilité d’ouverture et la probabilité d’ouverture du courant persistant observé en enregistrement de courant unitaire. L’occurrence de la réouverture des canaux explique le courant sodique persistant typique de Nav1.6. Finalement, nous avons utilisé une combinaison des techniques de RT-PCR sur les cellules uniques, immunohistochimie et d’immunoprécipitation pour étudier l’expression des sous-unités  dans différentes sous-population de neurones sensitifs. Les sous-unités  sont différentiellement exprimés dans la population de neurones de petits diamètres des ganglions dorsaux (2, 3) et dans la population de neurones de grands diamètres des ganglions dorsaux (1, 2). L’ARNm de Nav1.7 était significativement co-exprimé avec les sous-unités 2 et 3 dans la même population de neurones de petits diamètres des ganglions dorsaux. Ils forment un complexe protéine-protéine stable et sont colocalisés dans la membrane plasmatique des neurones. Lorsque les sous-unités 3 et 1 sont coexprimés avec Nav1.7, on observe un déplacement de la courbe d’activation et de la courbe d’inactivation ainsi qu’une augmentation marqués du courant de fenêtre. Nos données indiques une expression préférentielle des sous-unités  dans les neurones de petit et de grands diamètres ainsi qu’une régulation spécifique de Nav1.7 dans ces sous populations de neurones sensitifs. / Voltage-gated Na channels are responsible for the rising phase of action potentials, and consist of a pore-forming α subunit and one or more auxiliary β subunits. The α subunit alone is sufficient for the functional expression of Na channels, however, β subunits modulate the location, expression and functional properties of α subunits. My thesis will focus on three neuronal Na channels (Nav1.6, Nav1.7 and Nav1.8) and one skeletal muscle Na channel (Nav1.4). Neuronal Na channel are key players in the impulse propagation along axon. Nav1.7 and Nav1.8 are the main Na channels expressed in DRG neurons, and their altered expression and modulation following injury and inflammation play a major role in nociception and chronic pain. Nav1.6 is highly concentrated at nodes of Ranvier, and has a critical role not only in saltatory conduction but also in high-frequency repetitive firing. Skeletal muscle Na channel Nav1.4 is the initiator of muscle contraction. Mutations in Nav1.4 cause skeletal muscle channelopathies. Guiding questions for our investigations were: 1) How do auxiliary β subunits regulate peripheral nerve Na channel Nav1.6 and Nav1.8? 2) What is the underlying biophysical defect of M1476I, a novel founder SCN4A mutation associated with painful cold-induced myotonia in French Canadians? 3) What is the biophysical characterization of the Nav1.6 persistent current? 4) What is the expression pattern of auxiliary  subunits, and how do β subunits regulate Nav1.7 in DRG neurons? We addressed these questions by multiple approaches including patch clamp techniques for whole-cell and single-channel recordings in heterologous expression systems; immunohistochemistry, single-cell RT-PCR and immunoprecipitation in DRG neurons. Firstly, we employed single-cell RT-PCR of acutely dissociated DRG neurons to identify the expression of β1-4 subunits in small-diameter sensory neurons. Our results indicated that small-diameter DRG neurons widely expressed Nav1.6 and Nav1.8 channels and β1-β3 subunits. Co-expression studies were used to assess the regulation of Nav1.6 and Nav1.8 by β subunits. The β1 subunit induced a significant increase in the current density of Nav1.8 when co-expressed in HEK293 cells, but had no effect on that of Nav1.6. In addition, the C-terminal domain of β1 was involved in the modulation of Nav1.8 channel based on the results of experiments with β1/β2 chimeras harboring various regions of the strongly regulating β1 together with the weakly regulating β2 subunit. Secondly, we investigated the biophysical defects of M1476I mutation in Nav1.4 channels using whole-cell patch-clamp technique in tsA201 cells. M1476I mutant channel exhibited similar biophysical defects compared with other PAM-causing mutations, including an increased persistent current of Nav1.4, a slower current decay, a positive shift of fast inactivation, and an accelerated recovery from fast inactivation. Lowering the temperature slowed the kinetics for both wide-type and mutant channels, and worsened the defective fast inactivation of M1476I channels by further increasing the amplitude of the persistent current. Mexiletine helps relieve myotonia in M1476I carriers by effectively suppressing the increased persistent current, except for the use-dependent block. However, mexiletine had a reduced effectiveness on the use-dependent block of M1476I channels, and that was associated with a faster recovery from mexiletine block of mutant channels. Thirdly, we characterized the whole-cell and single-channel properties of Nav1.6 persistent currents expressed in HEK293 cells. We noted that Nav1.6 persistent current was highly sensitive to the composition of the internal solution, and persistent current was rarely detectable when CsF instead of CsCl was used. By substituting CsF for CsCl in the intracellular solution, we showed that Nav1.6 persistent current in the whole-cell configuration was 3–5% of the peak transient current. This amplitude of persistent current was similar to the ratio between peak and persistent open probability observed in the single-channel recording, indicating that the occurrence of late channel reopenings accounts for the persistent macroscopic Na current typical of Nav1.6. Finally, we employed a combination of single-cell RT-PCR, immunocytochemistry and immunoprecipitation to investigate  subunit expression in subpopulations of sensory neurons.  subunits were differentially expressed in small (2, 3) and large (1, 2) DRG neurons. Nav1.7 mRNA was significantly co-expressed with the 2 and 3 subunits in the same population of small-diameter DRG neurons. They formed stable protein-protein interactions and co-localized within the plasma membranes of neurons.When co-expressed in HEK293 cells, 3 and 1 subunits shifted activation and inactivation curves respectively and induced a marked increase in Nav1.7 window current. Our data indicated a preferential expression of  subunits in small and large DRG neurons and a subunit-specific Nav1.7 regulation in these subpopulations of sensory neurons.
14

Biophysical characterization of Nav1.7 and Nav1.8 rat isoforms of the voltage gated sodium channels from dorsal root ganglions : regulation by auxiliary B-subunits and by protein kinase A and C /

Vijayaragavan, Kausalia. January 2004 (has links)
Thèse (Ph. D.)--Université Laval, 2004. / Sur la p. de t., les "v" de Nav1.7 et Nav1.8 apparaissent en indice. Le "B" de B-subunits est le bêta de l'alphabet grec. Bibliogr. Publié aussi en version électronique.
15

Implication des canaux sodiques dans la transmission de l'influx nociceptif périphérique et leurs modulations pharmacologiques

Thériault, Olivier 20 April 2018 (has links)
Les canaux sodiques dépendant du voltage jouent différents rôles dans la transmission des signaux nociceptifs. Ils participent notamment à la genèse et à la transmission de la douleur. De plus, leur modulation serait impliquée dans les douleurs pathologiques. L’objectif général de ma thèse était d’étudier les impacts de la modulation des canaux Na+ afin de comprendre les effets sur l’activité des neurones sensitifs. Cette recherche s’est orientée sur 3 axes principaux. Premièrement, nous avons étudié la synergie entre les canaux Na+ qui mènent aux différents profils électrophysiologiques des neurones. Nous avons observé que les différents canaux Na+ exprimés dans les neurones de petits diamètres des DRG confèrent des propriétés uniques à chacun des neurones. Le remodelage des canaux Na+ qui survient dans différents états pathologiques pourrait être responsable de l’hyperexcitabilité de ces neurones. Deuxièmement, nous avons exploré les effets du butamben sur les canaux sodiques. Cette molécule soulage les douleurs pathologiques liées au cancer durant plusieurs semaines sans effet secondaire. Nous avons observé que cette molécule inhibe efficacement les canaux Na+ exprimés dans les neurones périphériques expliquant partiellement ses effets anesthésiques. De plus, son affinité est plus grande pour les canaux présents au sein des neurones sensitifs périphériques (Nav1.7 et Nav1.8) que pour celui présent dans neurones moteurs (Nav1.6). Cette propriété participerait à la sélectivité du butamben pour l’anesthésie tout en limitant les effets secondaires. Finalement, nous avons étudié les effets sur les canaux Na+ de trois inhibiteurs sélectifs de la recapture de la sérotonine (SSRI) fréquemment utilisés pour traiter différentes douleurs pathologiques (fluoxétine, paroxétine et citalopram). Nous avons observé que les effets analgésiques de la paroxétine et de la fluoxétine pourraient en partie passer par l’inhibition des canaux Na+. C’est par ailleurs improbable pour le citalopram compte tenu de sa haute spécificité pour les transporteurs de la sérotonine. L’étude a permis une meilleure connaissance de l’impact des canaux Na+ sur l’excitabilité des neurones nociceptifs. Ces avancées permettent notamment de mieux appréhender les mécanismes soutenant l’effet anesthésique des molécules telles que les SSRI et le butamben. Finalement, ces connaissances apparaissent cruciales dans le développement de nouvelles stratégies thérapeutiques. / Voltage gated sodium channels (Na+ channel) play different roles in the transmission of nociceptive signals. They are partially responsible of the genesis and the transmission of the nociceptive action potentials. Moreover, their modulation could be involved in pathological pain. The aim of the study was to investigate the impact of the modulation of sodium channels to understand how it affects nociceptive peripheral neurons excitability. This research was conducted in three phase. First, we were interested in the synergy between the different Na+ channels leading to multiple electrophysiological profiles of neurons. We observed that the different Na+ channels expressed by the small dorsal root ganglion (DRG) neurons confer unique properties to these neurons. The remodeling which occurs in various pathological conditions may thus be responsible for the increased excitability of those neurons. Second, we explored the effects of butamben on sodium channels. This molecule relieves cancer pain for several weeks without side effects. We found that the drug effectively inhibits Na + channels expressed in peripheral neurons. This partially explains its anesthetic effects. Moreover, its affinity is greater for the channels present in peripheral sensory neurons (Nav1.7 and Nav1.8) than the one present in motor neurons (Nav1.6). This property contributes to the selectivity of butamben for analgesia and limits its secondary effects. Finally, we studied the effects on Na+ channels of three selective serotonin reuptake inhibitors (SSRI) commonly used in the treatment of various pathological pains (fluoxetine, paroxetine and citalopram). We observed that paroxetine and fluoxetine may partially contribute to the analgesia through the inhibition of Na+ channels. Citalopram is unlikely to provide anesthesia through this mechanism as it is very selective for serotonin transporter. The study provides a better understanding of the impact of Na+ channels on neuronal excitability of nociceptive neurons. These advances contribute to a better understanding of the mechanisms leading to anesthesia by drugs such as SSRIs and butamben. In conclusion, these findings bring fundamental knowledge in the development of new therapeutic strategies.
16

Biophysical Characterization of Three SCN5A Mutations Linked to Long QT Syndrome Type 3, Sudden Infant Death Syndrome, and Atrial Fibrillation

Huang, Hai 17 April 2018 (has links)
Le gène SCN5A encode la sous-unité principale du canal sodique cardiaque (Nav1.5). Ce canal est responsable de l'initiation et de la propagation du potentiel d'action cardiaque. Un dysfonctionnement de ce canal peut causer le syndrome du QT long de type 3 (LQT3) et la fibrillation auriculaire (AF). Les patients atteints du LQT3 sont à risques de développer des arythmies létales, particulièrement des torsades de pointes qui peuvent causer le syndrome de mort subite du nourrisson (SIDS). Objectifs : Le but de cette étude est de caractériser les propriétés biophysiques de trois mutations sur le gène SCN5A : Y1767C, S1333Y et K1493R. Ces trois mutations ont respectivement été retrouvées chez un patient souffrant du LQT3, chez un patient mort du SIDS et la dernière mutation chez un patient souffrant d'AF. Méthodes : Des cellules tsA 201 ont été transfectées avec le gène codant pour le canal sauvage et les gènes codant pour les canaux mutés. Par la suite, leurs caractéristiques biophysiques ont été étudiées par la méthode du patch-clamp en configuration cellule entière. Résultats : La mutation Y1767C est située dans le segment 6 du domaine IV (DIVS6). Cette mutation sur le canal produit un courant persistant et un courant de fenêtre augmenté, ces résultats expliquent les phénotypes cliniques des patients affectés de cette mutation. La ranolazine, un nouveau bloqueur des canaux Na+, peut bloquer efficacement le courant Na+ persistant et réduire le courant de fenêtre. Ces canaux mutés montrent aussi une augmentation de l'inhibition fréquence-dépendante ainsi qu'une réactivation lente. La mutation S1333Y est situé sur la boucle S4 et S5 du domaine III. L'étude fonctionnelle de ce canal montre un gain de fonction : un courant Na+ persistant et une augmentation du courant de fenêtre provoquée par un déplacement de -8 mV de l'activation et de +7mV de l'inactivation. La mutation K1493R est située sur la boucle entre les domaines III-IV. Cette mutation provoque un déplacement vers des potentiels plus dépolarisés de l'inactivation est entraîne une augmentation du courant de fenêtre. Conclusion : Les manifestations cliniques observées chez les patients sont probablement dues aux changements des propriétés biophysiques provoqués par les trois mutations sur Nav1.5 rapportées dans cette étude. Nous concluons donc que (1) Y1767C est une mutation provoquant le LQT3. L'effet observé par la ranolazine sur cette mutation (la ranolazine agit probablement comme un bloqueur des canaux ouverts) nous donne de nouveaux indices pour le traitement des patients porteurs de cette mutation. (2) La mort subite du nourrisson observé est probablement lié à un syndrome LQT3 associé à la mutation S1333Y. (3) La mutation K1493R provoque de la fibrillation auriculaire causée par une hyperexcitabilité des cardiomyocytes.

Page generated in 0.0531 seconds