Spelling suggestions: "subject:"cancer - 1genetic aspects."" "subject:"cancer - cogenetic aspects.""
331 |
Regulation of the tumor suppressor p53 by Mdm2 and Mdm4Maetens, Marion M. 07 December 2007 (has links)
Mdm2 and Mdm4 are critical negative regulators of the p53 tumor suppressor. Mdm4-null mutants are severely anemic and exhibit impaired proliferation of the fetal liver erythroid lineage cells. This phenotype may indicate a cell-intrinsic function of Mdm4 in erythropoiesis. In contrast, red blood cell count was nearly normal in mice engineered to express low levels of Mdm2, suggesting that Mdm2 might be dispensable for red cell production. In the first part of the thesis, we further explore the tissue-specific functions of Mdm2 and Mdm4 in the erythroid lineage by crossing the conditional Mdm4 and Mdm2 alleles to an erythroid-specific-cre (EpoRGFP-Cre ) knock-in allele. Our data show that Mdm2 is required for rescuing erythroid progenitors from p53-mediated apoptosis during primitive erythropoiesis. In contrast, Mdm4 is only required for the high erythropoietic rate during embryonic definitive erythropoiesis. Thus, in this particular cellular context, interestingly, Mdm4 only contributes to p53 regulation at a specific phase of the differientation program.<p><p>Moreover, a large body of evidence indicates that aberrant expression of either MDM2 or MDM4 impairs p53 tumor suppression function and consequently favors tumor formation. Overexpression of MDM2 was observed in 10% of 8000 human cancers from various sites, including lung or stomach, and MDM4 was found amplified and/or overexpressed in 10-20% of over 800 diverse tumors including lung, colon, stomach and breast cancers. Remarkably, selective MDM4 amplification occurs in about 65% of human retinoblastomas. In contrast, MDM2 amplifications are relatively rare (about 5%) in retinoblastomas, indicating that depending on the tumor context (cell type, initiating oncogene, …), MDM4, rather than MDM2, overexpression might be selected for as a more efficient mean of suppression of p53 function. As part of a large effort to better understand why different cell types require distinct combinations of mutations to form tumours, we will examine the molecular basis for selective up-regulation of Mdm4 in retinoblastomas. In this context, we have successfully generated 2 conditional transgenic mouse lines expressing either mycMdm2 or mycMdm4 driven by the PCAGGs promoters in the ROSA26 locus. Since a cassette containing a floxed transcriptional stop element is inserted upstream of the transgenes, we can achieve tissue-specific expression and spatio-temporal regulation of the transgenes by using different Cre and CreER. By the use of N-terminal myc-tag fused with the transgenes, we are able to compare the expression levels of the transgenes. Finally, due to C-terminal IRES-GFP element, we can easily identify transgene expressing cells. One of our aims is to use this Mdm4 conditional transgenic mouse line as the first, non-chimeric, mouse model of retinoblastoma that can be used as an appropriate preclinical model to improve treatment of this disease.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
332 |
Molecular mechanisms of acquired gemcitabine resistance in pancreatic cancerQin, Li 11 1900 (has links)
Indiana University-Purdue University (IUPUI) / Most pancreatic cancer patients receiving gemcitabine chemotherapy eventually develop resistance to gemcitabine. To improve survival and prognosis of pancreatic cancer patients, better understanding the mechanisms of gemcitabine resistance and discovery of new therapeutic targets are required. In this study, I investigated the molecular mechanisms of acquired gemcitabine resistance using a stepwise gemcitabine-selected pancreatic cancer cell line in comparison to the parental cell line. I found that 14-3-3σ is up-regulated in the drug resistant cell line due to demethylation in its first exon, and the up-regulation of 14-3-3σ gene expression, in turn, contributes to gemcitabine resistance. Intriguingly, I found that demethylation of the 14-3-3σ gene in gemcitabine resistant cells is reversibly regulated by DNMT1 and UHRF1. Furthermore, I found that 14-3-3σ over-expression causes gemcitabine resistance by inhibiting gemcitabine-induced apoptosis and caspase-8 activation possibly via binding to YAP1. The finding of demethylation of the 14-3-3σ gene in gemcitabine resistant cells led to a hypothesis that other genes may also be changed epigenetically following gemcitabine selection. By RRBS (Reduced Representation Bisulfite Sequencing) analysis, 845 genes were found to have altered methylation. One of these genes, PDGFD, was further investigated and found to have reversible demethylation at its promoter region in the drug resistant cells and contribute to gemcitabine resistance possibly via autocrine activation of the STAT3 signaling pathway. Together, these findings not only provide evidence that 14-3-3σ and PDGFD over-expression contribute to acquired gemcitabine resistance and that reversible epigenetic changes may play an important role in acquired gemcitabine resistance, but also demonstrate that the molecular mechanisms of acquired gemcitabine resistance in pancreatic cancer cells are complex and multifaceted.
|
333 |
Bidirectional regulation of YAP and ALDH1A1Martien, Matthew F. 10 August 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Breast cancer is the second leading cause of cancer death for women in the United States. Approximately, 1 in 5 women will recur with cancer within 10 years of completing treatment and recent publications have suggested that breast cancer stem cells confer resistance to therapy. These reports highlight aldehyde dehydrogenase 1A1 (ALDH1A1) and Yes-associated protein (YAP) as a biomarker and key mediator of the stem cell phenotype respectively. To further understand how YAP and ALDH1A1 facilitate chemoresistance, this study investigated how ALDH1A1 specific inhibition affected YAP activity and growth of basal-like breast cancer cells, which are enriched in cancer stem cells. Intriguingly, attenuation of growth by ALDH1A1 inhibition was observed when cells were plated on a reconstituted basement membrane. Further, the inhibition of cell growth correlated with cytosolic retention of YAP and a reduction in YAP signaling. In a complementary analysis, the overexpression of YAP correlated with an increased level of ALDH1A1 transcript. Results from this study indicate a novel mechanism by which basal-like breast cancer cells utilize YAP to maintain the stem cell phenotype and also suggest ALDH1A1 as a potential therapeutic target for breast cancer therapy.
|
334 |
Mechanism of tissue transglutaminase upregulation and its role in ovarian cancer metastasisCao, Liyun 03 July 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Ovarian cancer (OC) is a lethal disease due to metastasis and chemoresistance. Our laboratory previously reported that tissue transglutaminase (TG2) is overexpressed in OC and enhances OC peritoneal metastasis. TG2 is a multifunctional protein which catalyzes Ca2+-dependent cross-linking of proteins. The purpose of this study was to explore the mechanism by which TG2 is upregulated in OC and its role in OC progression. We demonstrated that transforming growth factor (TGF)-β1 is secreted in the OC milieu and regulates the expression and function of TG2 primarily through the canonical Smad signaling pathway. Increased TG2 expression level correlates with a mesenchymal phenotype of OC cells, suggesting that TGF-β1 induced TG2 promotes epithelial-to-mesenchymal transition (EMT). TG2 induces EMT by negatively regulating E-cadherin expression. TG2 modulates E-cadherin transcriptional suppressor Zeb1 expression by activating NF-κB complex, which leads to increased cell invasiveness in vitro and tumor metastasis in vivo. The N-terminal fibronectin (FN) binding domain of TG2 (tTG 1-140), lacking both enzymatic and GTPase function, induced EMT in OC cells, suggesting the interaction with FN involved in EMT induction. A TGF-β receptor kinase inhibitor, SD-208, blocked TGF-β1 induced TG2 upregulation and EMT in vitro and tumor dissemination in vivo, which confirms the link between TGF-β1 and TG2 in EMT and tumor metastasis. TG2 expression was correlated with the number and size of self-renewing spheroids, the percentage of CD44+CD117+ ovarian cancer stem cells (CSCs) and with the expression level of stem cell specific transcriptional factors Nanog, Oct3/4, and Sox2. These data suggest that TG2 is an important player in the homeostasis of ovarian CSCs, which are critical for OC peritoneal metastasis and chemoresistance. TG2 expression was also increased in CSCs isolated from human ovarian tumors, confirming the implication of TG2 in CSCs homeostasis. Further, we demonstrated that TG2 protects OC cells from cisplatin-induced apoptosis by regulating NF-κB activity. We proposed a model whereby TGF-β-inducible TG2 modulates EMT, metastasis, CSC homeostasis and chemoresistance in OC. These findings contribute to a better understanding of the mechanisms of OC metastasis modulated by TG2.
|
335 |
Understanding social, cultural, and religious factors influencing medical decision-making on breast cancer genetic testing in the Orthodox Jewish communityYi, Hae Seung January 2023 (has links)
Background. While the prevalence of a pathogenic variant in the BRCA1 and BRCA2 genes occurs in about 1:400 (0.25%) in the general population, the prevalence is as high as 1:40 (2.5%) among the Ashkenazi Jewish population. Despite cost-effective preventive measures for mutation carriers, Orthodox Jews constitute a cultural and religious group that presents challenges to BRCA1 and BRCA2 genetic testing. This study analyzed a dialogue of key stakeholders and community members to explore factors that influence decision-making about BRCA1 and BRCA2 genetic testing in the New York Orthodox Jewish community. Methods. Qualitative research methods, based in Grounded Theory and Narrative Research, were utilized to analyze the narratives of key stakeholders and community members in an analysis of qualitative data collected from 49 stakeholders. A content analysis was conducted to identify themes; inter-rater reliability was 71%.
Results. Facilitators to genetic testing were prevention and education, while barriers to genetic testing included negative emotions, impact on family/romantic relationships, cost, and stigma. The role of religious figures and healthcare professionals in medical decision-making were viewed as controversial. Education, health, and community were discussed as influential factors. There were issues around disclosure, implementation, and information needs.
Conclusion. This study revealed the voices of the Orthodox Jewish women (decision-makers) and key stakeholders (influencers) who play a critical role in the medical decision-making process. The findings have broad implications for engaging community stakeholders within faith-based or culturally distinct groups to ensure better utilization of healthcare services for cancer screening and prevention designed to improve population health.
|
336 |
Study of SUMOylation in HPV-positive human cervical carcinoma HeLa by comparative proteomics and biarsenical-tetracysteine fluorescent labeling system.January 2007 (has links)
Chan, Ho Yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 263-283). / Abstracts in English and Chinese. / Examination Committee List --- p.i / Acknowledgements --- p.ii / Abstract --- p.iv / 摘要 --- p.vi / Table of Contents --- p.viii / List of Abbreviations --- p.xvii / List of Figures --- p.xx / List of Tables --- p.xxv / Chapter Chapter I --- Introduction --- p.1 / Chapter 1.1 --- SUMO (Small Ubiquitin-like Modifier) and SUMOylation --- p.1 / Chapter 1.1.1 --- "Ubiquitin, Ubiquitin-like proteins and SUMO isoforms" --- p.2 / Chapter 1.1.2 --- SUMO cycle --- p.5 / Chapter 1.1.2.1 --- SUMO conjugation consensus sequence --- p.5 / Chapter 1.1.2.2 --- SUMO maturation --- p.6 / Chapter 1.1.2.3 --- SUMO conjugation cascade --- p.7 / Chapter 1.1.2.4 --- SUMO deconjugation --- p.9 / Chapter 1.1.3 --- Mode of SUMO action --- p.12 / Chapter 1.1.4 --- Biological functions of SUMO --- p.13 / Chapter 1.1.4.1 --- SUMO in cancer --- p.14 / Chapter 1.2 --- Human cervical cancer and human papillomavirus (HPV) --- p.17 / Chapter 1.2.1 --- Infectious cycle of HPV-16 --- p.18 / Chapter 1.2.1.1 --- Viral entry --- p.18 / Chapter 1.2.1.2 --- Maintenance --- p.18 / Chapter 1.2.1.3 --- Deregulation of cell cycle --- p.19 / Chapter 1.2.1.4 --- Amplification and virion release --- p.20 / Chapter 1.2.2 --- Viral cancer induction --- p.22 / Chapter 1.2.2.1 --- Integration into the host genome --- p.22 / Chapter 1.2.2.2 --- Viral oncoproteins E6 and E7 --- p.23 / Chapter 1.2.3 --- SUMOylation and HPV --- p.24 / Chapter 1.2.3.1 --- Known examples of virus-host SUMOylation system interaction --- p.24 / Chapter 1.2.3.2 --- Other possible mode of virus-SUMO interaction --- p.26 / Chapter 1.3 --- A novel labeling method: biarsenical-tetracysteine labeling in SUMO study --- p.28 / Chapter 1.3.1 --- Potential use of 2As-4Cys system in SUMO studies --- p.31 / Chapter 1.3.2 --- Potential use of 2As-4Cys system in SUMO proteomics --- p.31 / Chapter 1.4 --- Objectives of the present study --- p.34 / Chapter Chapter II --- Proteomics investigation of SUMOylation in human cervical carcinoma cell line HeLa --- p.35 / INTRODUCTION --- p.35 / Chapter 2.1 --- MATERIALS --- p.37 / Chapter 2.1.1 --- Vectors for expression of SUMO and SUMOylation enzymes in E. coli --- p.37 / Chapter 2.1.2 --- E.coli cell strains --- p.38 / Chapter 2.1.3 --- Mammalian cell lines --- p.39 / Chapter 2.1.4 --- E.coli growth mediums --- p.40 / Chapter 2.1.5 --- Mammalian cell growth medium --- p.41 / Chapter 2.1.6 --- Reagents and buffers --- p.41 / Chapter 2.1.6.1 --- Reagents and buffers for molecular cloning --- p.41 / Chapter 2.1.6.2 --- Reagents and buffers for E.coli protein expression --- p.43 / Chapter 2.1.6.3 --- Reagents and buffers for mammalian cell culture --- p.44 / Chapter 2.1.6.4 --- Reagents and buffers for Western blot study --- p.45 / Chapter 2.1.7 --- Reagents and solutions for two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) sample preparation --- p.46 / Chapter 2.1.7.1 --- Reagents and solutions for 2-DE --- p.46 / Chapter i. --- 2-DE sample preparation --- p.46 / Chapter ii. --- First dimensional gel electrophoresis -isoelectric focusing (IEF) --- p.46 / Chapter iii. --- Second dimensional gel electrophoresis -SDS-PAGE --- p.47 / Chapter iv. --- Silver staining --- p.47 / Chapter 2.1.7.2 --- Reagents and solutions for mass spectrometry sample preparation --- p.48 / Chapter i. --- Destaining of silver stained gel spots --- p.48 / Chapter ii. --- Trypsin digestion --- p.48 / Chapter iii. --- Peptide extraction --- p.48 / Chapter iv. --- Desalting and concentration of peptide mixture --- p.49 / Chapter 2.2 --- METHODS --- p.50 / Chapter 2.2.1 --- Molecular cloning of SUMO-1 into pET-28m and pHM6 vectors --- p.50 / Chapter 2.2.1.1 --- Design of primers for the cloning of SUMO-1 --- p.50 / Chapter 2.2.1.2 --- DNA amplification by polymerase chain reaction (PCR) --- p.51 / Chapter 2.2.1.3 --- DNA extraction from agarose gels --- p.52 / Chapter 2.2.1.4 --- Restriction digestion of vectors and purified PCR products --- p.54 / Chapter 2.2.1.5 --- Ligation of SUMO cDNA into expression vector pET-28m and pHM6 --- p.55 / Chapter 2.2.1.6 --- Preparation of competent cells --- p.56 / Chapter 2.2.1.7 --- Transformation of ligated mixture into competent DH5a --- p.56 / Chapter 2.2.1.8 --- Preparation of plasmid DNA --- p.57 / Chapter 2.2.1.8.1 --- Mini-preparation of plasmid DNA --- p.57 / Chapter 2.2.1.8.2 --- Midi-preparation of plasmid DNA --- p.58 / Chapter 2.2.1.8.3 --- DNA quantification and quality measurement --- p.60 / Chapter 2.2.2 --- "Expression of His6-tagged SUMO, ubc9, TDG, GST-tagged El and MBP-tagged Prdx 1 with E.coli" --- p.60 / Chapter 2.2.3 --- "Purification of His6-tagged SUMO, ubc9, TDG, GST-tagged El and MBP-tagged Prdx 1" --- p.62 / Chapter 2.2.3.1 --- Affinity chromatography --- p.65 / Chapter 2.2.3.1.1 --- Ni-NTA affinity chromatography --- p.65 / Chapter 2.2.3.1.2 --- Heparin affinity chromatography --- p.66 / Chapter 2.2.3.1.3 --- Glutathione affinity chromatography --- p.66 / Chapter 2.2.3.1.4 --- Amylose affinity chromatography --- p.67 / Chapter 2.2.3.2 --- Ion exchange chromatography --- p.68 / Chapter 2.2.3.2.1 --- Anion exchange chromatography --- p.68 / Chapter 2.2.3.2.2 --- Cation exchange chromatography --- p.68 / Chapter 2.2.3.3 --- Size exclusion chromatography --- p.69 / Chapter 2.2.3.4 --- Purification strategies --- p.70 / Chapter 2.2.3.4.1 --- Purification of His6-tagged SUMO --- p.70 / Chapter 2.2.3.4.2 --- Purification of His6-tagged TDG --- p.71 / Chapter 2.2.3.4.3 --- Purification of His6-tagged ubc9 --- p.72 / Chapter 2.2.3.4.4 --- Purification of GST-tagged El --- p.73 / Chapter 2.2.3.4.5 --- Purification of MBP-tagged Prdx 1 --- p.74 / Chapter 2.2.4 --- HeLa and C-33A cell culturing and protein extraction --- p.75 / Chapter 2.2.4.1 --- HeLa and C-33A cell culturing --- p.75 / Chapter 2.2.4.2 --- Protein extraction for in vitro SUMOylation assay --- p.76 / Chapter 2.2.5 --- Protein quantification with Bradford assay --- p.76 / Chapter 2.2.6 --- In vitro SUMO conjugation assay --- p.77 / Chapter 2.2.6.1 --- In vitro SUMO conjugation system optimization --- p.77 / Chapter 2.2.6.2 --- In vitro SUMO conjugation of HeLa cell extract --- p.78 / Chapter 2.2.7 --- Transient transfection of pHM6-SUMO-l into HeLa cells and protein extraction from HeLa cells --- p.79 / Chapter 2.2.7.1 --- Transfection with lipofection method --- p.79 / Chapter 2.2.7.2 --- Determination of transfection efficiency --- p.80 / Chapter 2.2.7.3 --- Whole cell protein extraction of transfected cells --- p.81 / Chapter 2.2.8 --- Protein quantification with BCA assay --- p.81 / Chapter 2.2.9 --- SDS-polyacrylamide gel electrophoresis (SDS-PAGE) --- p.83 / Chapter 2.2.10 --- Western blot analysis --- p.84 / Chapter 2.2.10.1 --- Electro-transfer blotting --- p.84 / Chapter 2.2.10.2 --- Immunoblotting with antibodies --- p.84 / Chapter 2.2.10.3 --- ECL detection --- p.85 / Chapter 2.2.10.4 --- Mild stripping for re-probing --- p.86 / Chapter 2.2.11 --- Two-dimensional gel electrophoresis (2-DE) --- p.86 / Chapter 2.2.11.1 --- Sample preparation --- p.86 / Chapter 2.2.11.2 --- First dimension gel electrophoresis -isoelectric focusing (IEF) --- p.87 / Chapter 2.2.11.3 --- Second dimension gel electrophoresis -SDS-PAGE --- p.88 / Chapter 2.2.11.3.1 --- Strip equilibration --- p.88 / Chapter 2.2.11.3.2 --- 16 x 18cm SDS-PAGE --- p.88 / Chapter 2.2.11.4 --- Visualization of proteins on SDS-polyacrylamide gel --- p.90 / Chapter 2.2.11.4.1 --- Silver staining --- p.90 / Chapter 2.2.11.4.2 --- Coomassie Blue® R250 staining --- p.91 / Chapter 2.2.12 --- Sample preparation for mass spectrometry analysis --- p.92 / Chapter 2.2.12.1 --- Destaining and trypsin digestion --- p.92 / Chapter 2.2.12.2 --- Extraction of peptide mixture --- p.93 / Chapter 2.2.12.3 --- Desalting and concentration of peptide mixture --- p.93 / Chapter 2.3 --- RESULTS --- p.95 / Chapter 2.3.1 --- Construction of recombinant pET-28m-SUMO-l and pHM6-SUMO-l --- p.95 / Chapter 2.3.2 --- "Purification of His6-tagged SUMO, ubc9, TDG and GST-tagged El" --- p.98 / Chapter 2.3.2.1 --- Purification of His6-SUMO --- p.98 / Chapter 2.3.2.2 --- Purification of His6-TDG --- p.101 / Chapter 2.3.2.3 --- Purification of His6-ubc9 --- p.104 / Chapter 2.3.2.4 --- Purification of GST-El --- p.106 / Chapter 2.3.3 --- In vitro SUMO conjugation assay --- p.108 / Chapter 2.3.3.1 --- Optimization of in vitro SUMO conjugation system --- p.108 / Chapter 2.3.3.2 --- In vitro SUMO conjugation of HeLa cell protein extract --- p.111 / Chapter 2.3.3.2.1 --- Protein extraction for in vitro sumoylation assay --- p.111 / Chapter 2.3.3.2.2 --- In vitro SUMOylation of HeLa cell lysate --- p.114 / Chapter 2.3.4 --- Differential proteomes of control and in vitro SUMOylated HeLa total cellular extract --- p.116 / Chapter 2.3.4.1 --- Mass spectrometric identification of differential protein candidates --- p.123 / Chapter 2.3.5 --- Overexpression of SUMO-1 in HeLa cells by transient transfection --- p.127 / Chapter 2.3.6 --- Differential proteomes of total cellular protein extract from control and SUMO-1 transfected HeLa cells --- p.128 / Chapter 2.3.6.1 --- Mass spectrometric identification of differential protein candidates --- p.132 / Chapter 2.4 --- Proteins identified in proteomic study with in vitro SUMOylation -Analysis of protein candidate --- p.133 / Chapter 2.4.1 --- Proteins identified from the in vitro investigation --- p.133 / Chapter 2.4.2 --- Verification of putative SUMO substrate Prdx 1 --- p.139 / Chapter 2.4.2.1 --- Purification of Prdx 1 --- p.139 / Chapter 2.4.2.2 --- In vitro SUMOylation of Prdx 1 --- p.142 / Chapter 2.4.3 --- Highlights of the proteins identified --- p.145 / Chapter 2.4.3.1 --- DJ-1 protein --- p.145 / Chapter 2.4.3.2 --- nm23A --- p.145 / Chapter 2.4.3.3 --- v-crk protein of CT10 --- p.146 / Chapter 2.4.3.4 --- Annexin I --- p.146 / Chapter 2.4.3.5 --- "Enolase 1, aldolase A, triosephosphate isomerase (TIM) and phosphoglycerate mutase 1" --- p.147 / Chapter 2.4.3.6 --- CyclophilinA(CypA) --- p.148 / Chapter 2.4.3.7 --- Stress induced phosphoprotein 1 (Stip 1) --- p.148 / Chapter 2.4.3.8 --- TSA and peroxiredoxin 1 (Prdx 1) --- p.149 / Chapter 2.5 --- Proteins identified in proteomic study with overexpression of SUMO-1 in HeLa cells -Analysis of protein candidate --- p.150 / Chapter 2.5.1 --- Proteins identified from the in vivo investigation --- p.150 / Chapter 2.5.2 --- Verification of upregulation of keratin 17 --- p.157 / Chapter 2.5.2.1 --- Immunoblotting against keratin 17 --- p.157 / Chapter 2.5.3 --- Highlights of the proteins identified --- p.159 / Chapter 2.5.3.1 --- "Heat shock proteins (Hsp 60, 70 and 27)" --- p.159 / Chapter 2.5.3.2 --- 14-3-3σ protein (SFN protein) --- p.161 / Chapter 2.5.3.3 --- PDZ-RGS3 --- p.162 / Chapter 2.5.3.4 --- "Keratins 8, 17" --- p.163 / Chapter 2.5.3.5 --- XIAP-1 --- p.164 / Chapter 2.5.3.6 --- ISG15 --- p.164 / Chapter 2.6 --- DISCUSSION --- p.166 / Chapter Chapter III --- Characterization of a novel fluorescent labeling method: Biarsencial-tetracysteine labeling in SUMO study --- p.182 / INTRODUCTION --- p.182 / Chapter 3.1 --- MATERIALS --- p.184 / Chapter 3.1.1 --- "Molecular cloning, protein expression and purification of pET-28m-4Cys 1 -SUMO-1 and pET-28m-4Cys2-SUMO-1" --- p.184 / Chapter 3.1.2 --- Mammalian cell culture and transient transfection of pHM6-4Cysl-SUMO-1 and pHM6-4Cys2-SUMO-l into HeLa cells --- p.184 / Chapter 3.1.3 --- Reagents and buffers --- p.184 / Chapter 3.1.3.1 --- Reagents and buffers for Lumio´ёØ in-gel labeling --- p.184 / Chapter 3.1.3.2 --- Reagents and buffers for Lumio´ёØ in cell labeling --- p.185 / Chapter 3.1.3.3 --- Reagents and buffers for immunostaining --- p.186 / Chapter 3.2 --- METHODS --- p.187 / Chapter 3.2.1 --- Molecular cloning of tetracysteine-tagged SUMO (4Cys-SUMO) into pET-28m and pHM6 vectors --- p.187 / Chapter 3.2.1.1 --- Design of primers and oligonucleotides encoding tetracysteine tag --- p.187 / Chapter 3.2.1.1.1 --- For 4Cysl-SUMO-1 --- p.187 / Chapter 3.2.1.1.2 --- For 4Cys2-SUMO-l --- p.188 / Chapter 3.2.1.2 --- DNA amplification of 4Cysl-SUMO-1 by Polymerase chain reaction (PCR) --- p.189 / Chapter 3.2.1.3 --- Restriction digestion of vectors and purified PCR products of 4Cysl-SUMO-1 --- p.191 / Chapter 3.2.1.4 --- Ligation of 4Cysl-SUMO into expression vector pET-28m and pHM6 --- p.191 / Chapter 3.2.1.5 --- Restriction digestion of pET-28m-SUMO and pHM6-SUMO for ligation with 4Cys2 oligos --- p.192 / Chapter 3.2.1.6 --- Ligation of 4Cys2 oligos to the digested pET-28m-SUMO and pHM6-SUMO plasmids --- p.193 / Chapter 3.2.1.6.1 --- Self-annealing of the 4Cys oligonucleotides --- p.193 / Chapter 3.2.1.6.2 --- Phosphorylation of ds 4Cys2 oligos and ligation to the plasmids --- p.193 / Chapter 3.2.2 --- Expression and purification of pET-28m-4Cys 1 -SUMO-1 and pET-28m-4Cys2-SUMO-1 in E.coli expression system --- p.195 / Chapter 3.2.3 --- Immunohistochemistry (IHC) staining of endogenous SUMO in HeLa cells --- p.196 / Chapter 3.2.4 --- In-cell labeling of 4Cysl/2-SUMO with Lumio´ёØ Reagent --- p.197 / Chapter 3.2.4.1 --- Preparation --- p.197 / Chapter 3.2.4.2 --- In-cell Lumio´ёØ labeling --- p.198 / Chapter 3.2.4.3 --- Detection and imaging of the labeled cells --- p.199 / Chapter 3.2.5 --- In-gel labeling of 4Cysl/2-SUMO with Lumio´ёØ Reagent --- p.199 / Chapter 3.2.5.1 --- Lumio´ёØ in-gel labeling --- p.199 / Chapter 3.2.5.2 --- Visualization and imaging of the labeled gel --- p.200 / Chapter a. --- UV illumination at 302 nm --- p.200 / Chapter b. --- Typhoon Trio TMLaser-scanning at 532 nm --- p.201 / Chapter 3.2.5.3 --- Detection limit of fluorescent 4Cys2-SUMO-l in SDS-PAGE --- p.201 / Chapter 3.2.5.4 --- In-gel labelling in two-dimensional electrophoresis (2-DE) --- p.202 / Chapter 3.2.5.4.1 --- Modification of equilibration buffer before SDS-PAGE --- p.202 / Chapter 3.3 --- RESULTS --- p.203 / Chapter 3.3.1 --- Adoption of old version of 4Cys-tag (4Cys 1) in SUMO study --- p.203 / Chapter 3.3.1.1 --- Construction of recombinant pET-28m-4Cys 1 -SUMO-1 and pHM6-4Cysl-SUMO-1 --- p.203 / Chapter 3.3.1.2 --- In vivo HA-4Cysl-SUMO-1 Lumio´ёØ labelling --- p.205 / Chapter 3.3.1.3 --- Immunohistochemistry (IHC) staining of endogenous SUMO in HeLa cells --- p.207 / Chapter 3.3.1.4 --- Expression and purification of His6-4Cysl-SUMO-1 --- p.208 / Chapter 3.3.1.5 --- Validation of 4Cys1-SUMO-1 conjugate by Lumio´ёØ in-gel labeling --- p.211 / Chapter 3.3.2 --- Adoption of a modified version of 4Cys-tag (4Cys2) in SUMO study --- p.213 / Chapter 3.3.2.1 --- Construction of recombinant pET-28m-4Cys2-SUMO-l and pHM6-4Cys2-SUMO-l --- p.213 / Chapter 3.3.2.2 --- In vivo HA-4Cys2-SUMO-l Lumio´ёØ labelling --- p.216 / Chapter 3.3.2.3 --- Expression and purification of His6-4Cys2-SUMO-1 --- p.219 / Chapter 3.3.2.4 --- Validation of 4Cys2-SUMO-l conjugate Lumio´ёØ in-gel labeling --- p.221 / Chapter 3.3.3 --- 2As-4Cys labeling in two-dimensional electrophoresis (2-DE) --- p.223 / Chapter 3.3.3.1 --- Detection limit of 4Cys2-SUMO-l in SDS-PAGE --- p.224 / Chapter 3.3.3.2 --- Lumio´ёØ labeling in 2-DE --- p.226 / Chapter 3.4 --- DISCUSSION --- p.232 / Chapter Chapter IV --- Conclusion and Future Perspectives --- p.242 / Chapter 4.1 --- Conclusion on proteomic study of SUMOylation --- p.242 / Chapter 4.2 --- Future perspectives of proteomic study of SUMOylation --- p.245 / Chapter 4.2.1 --- In vitro study --- p.245 / Chapter 4.2.2 --- In vivo study --- p.246 / Chapter 4.3 --- Conclusion of the investigation of biarsencial-tetracysteine (2As-4Cys) system application on SUMO study --- p.247 / Chapter 4.4 --- Future perspectives of the application of 2As-4Cys system application on SUMO study --- p.249 / Chapter 4.4.1 --- In cell study --- p.249 / Chapter 4.4.2 --- In gel study --- p.250 / Appendices --- p.251 / Chapter 1. --- Genotype of E.coli strains --- p.251 / Chapter 2. --- Vector maps --- p.252 / Chapter a. --- Vector map and MCS of pET-28a --- p.252 / Chapter b. --- Vector map and MCS of pHM6 --- p.253 / Chapter c. --- Vector information of pTwo-E --- p.254 / Chapter 3. --- Primers used in this study --- p.255 / Chapter 4. --- Nikon TE2000 filter sets spectrums --- p.257 / Chapter a. --- FITC/GFP filter set --- p.257 / Chapter b. --- RFP filter set --- p.257 / Chapter c. --- UV/DAPI/Hoechst filter set --- p.258 / Chapter 5. --- Akt signalling pathway diagram --- p.259 / Chapter 6. --- DNA sequence of SUMOs and 4Cys2 oligonucleotide --- p.260 / Chapter 7. --- Electrophoresis markers --- p.261 / References --- p.263
|
337 |
The impact of genetic counselling for familial breast cancer on women's psychological distress, risk perception and understanding of BRCA testingElliott, Diana January 2008 (has links)
[Truncated abstract] Background: A review of the literature indicated there was a need for more long-term randomised controlled studies on the effects of BRCA counselling/testing on high risk women, including improved strategies for risk communication. Reviews have also shown women are confused about the significance of inconclusive or non informative results with a need for more research in this area. Aims: The general aim of this study was to evaluate the impact of breast cancer genetic counselling on psychological distress levels, perception of risk, genetic knowledge and understanding of BRCA testing/test results in a cohort of 207 women from high risk breast cancer families who were referred for genetic counselling in Perth during the period 1997 to 2001. Short- and long-term impact of BRCA genetic counselling/testing was determined in women with and without cancer in a randomised controlled trial as part of which women were randomised to either receive immediate versus delayed genetic counselling. This included family communication patterns before BRCA testing, anticipated outcomes of testing on oneself and family including intentions for result disclosure. Comprehension of index and predictive BRCA testing with possible results was assessed both in the short- and the long-term and understanding of individual or family BRCA test results was evaluated at long-term. The effect of genetic counselling on breast cancer risk perception in unaffected women was evaluated. This study considered a theoretical framework of educational learning theories to provide a basis for risk communication with possible relevance for future research. ... Only 25% of the original study population (52/207) reported BRCA results and women's understanding of results is concerning. Key findings were: 1. The majority of affected women received an inconclusive result. 2. Out of twelve unaffected women who reported results, seven were inconclusive which are not congruent with predictive testing. This implies that these women did not understand their test result. 3. A minority of untested relatives did not know whether a family mutation had or had not been found in their tested family member or what their actual test result was. This implies either a lack of disclosure or that woman did not understand the rationale for and significance of testing for a family mutation. 4. Three relatives did not understand a positive result was a mutation. Conclusion: The implication of this research for breast cancer counselling and testing services is that women who wait for counselling are no worse off in terms of short- or long-term general psychological distress than women who receive the intervention early. There is a suggestion that unaffected women without the disease found counselling more advantageous than affected women. The meaning of BRCA results as reported by women is concerning particularly women's understanding of negative and inconclusive results and further research is needed in this area. Too much information presented at counselling may affect women's comprehension of risk, BRCA testing and future test results and further research is required to evaluate the effects of information overload.
|
338 |
Gene-Environmental Interaction Assessment in Genome Wide Association StudyLiu, Wei Unknown Date
No description available.
|
339 |
Biological and clinical relevance of epigenetic modifications in human breast cancersDedeurwaerder, Sarah 25 February 2011 (has links)
It is increasingly recognized by the scientific community that the field of epigenetics is a key step for a better understanding of human biology in both normal and pathological states. Its implication in cancer, and in particular in breast cancer, is now well accepted. Breast cancer, responsible for more than 450,000 deaths worldwide yearly, is a heterogenous disease at the histological and clinical levels as well as at the molecular level. Despite considerable efforts to develop new treatments and improve patient management, patients with a same “profile” of breast cancer can respond differently to therapies and have completely different clinical outcomes. There is therefore a critical need to improve our understanding of breast cancer biology and diversity, in order to find new markers that should provide a better management of patients and the development of new therapies. An increasing number of biologists, pathologists as well as clinicians are currently working towards these goals. During my PhD, we have conducted two studies in order to gain new insights into the contribution of epigenetics in breast cancer biology.<p>In the first study, by performing large genome-scale DNA methylation profiling of numerous breast tumors as well as of normal breast tissues, we first revealed the existence of six groups of breast tumors based on their DNA methylation profiles. Three of these groups showed a strong association with the basal-like, HER2 and luminal A breast cancer subtypes, previously identified by gene expression profiling. Interestingly, the three other groups were found to be a mixture of several gene expression-based subtypes, thus revealing the capacity of DNA methylation profiling to improve breast tumor taxonomy. Second, our study suggests that the establishment of DNA methylation patterns of breast tumors might help to determine their cell type of origin. Finally, we also showed that DNA methylation profiling can reflect the cell type composition of the tumor microenvironment and that a signature of T cell tumoral infiltration is associated with a good prognosis in particular categories of breast cancer patients. <p>In the second study, we revealed the clinical relevance of the KDM5 histone demethylases in breast cancer. The expression of these histone demethylases was deregulated in the analyzed breast tumors as well as in the pre-invasive samples as compared to normal breast samples. This suggests that KDM5 enzymes might be good markers for early diagnosis of breast cancer. Moreover, we showed a prognostic value of the KDM5C histone demethylase.<p>In conclusion, the above data should provide a better understanding of breast cancer biology and diversity, and this should bring new insights to improve breast cancer patient management.<p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
340 |
Pathologies thyroïdiennes et modèles in vitro: profils d'expression génique et phénotypes moléculairesHebrant, Aline 11 February 2010 (has links)
La thèse s’inscrit dans un projet de recherche global visant à caractériser les tumeurs thyroïdiennes sur le plan moléculaire, afin de mieux comprendre leur physiopathologie et afin d’identifier des biomarqueurs (signatures moléculaires) qui pourront être utilisés pour le diagnostic, le pronostic et leur traitement. Parmi celles-ci, nous distinguons les adénomes autonomes (AA) et folliculaires (FTA) tumeurs bénignes encapsulées, et les carcinomes, tumeurs malignes. Ceux-ci sont eux-mêmes subdivisés en carcinomes différenciés, folliculaires (FTC) ou papillaires (PTC), et peuvent évoluer en carcinomes anaplasiques (ATC), totalement dédifférenciés. Un autre type de tumeurs bénignes différenciées, très rares, existe: l’hyperthyroïdie non auto-immune familiale (FNAH). Ces tumeurs sont causées pour la plupart par des mutations qui activent de manière constitutive des cascades de signalisation, essentiellement la cascade de l’AMPc et la cascade des MAPK. Le but de notre thèse était de valider un système expérimental in vitro des PTC, d’étudier les profils d’expression génique des FNAH et de les comparer avec ceux des AA, et de définir les profils ARNm et miRNA des ATC pour les comparer à ceux des PTC pour identifier de nouvelles cibles thérapeutiques potentielles. Pour réaliser ces objectifs, nous avons utilisé la technologie des microarrays qui permet d’analyser simultanément l’expression de milliers de gènes dans différentes conditions. Nous avons donc utilisé une approche multidisciplinaire alliant une partie expérimentale et une partie bioinformatique.<p><p>La première partie du travail a consisté à réaliser un modèle d’étude in vitro pour caractériser les PTC au niveau moléculaire. A cet effet, des cultures primaires de thyrocytes ont été traitées avec de l’EGF et du sérum pendant différents temps (1,5h, 3h, 16h, 24h et 48h) ce qui stimule la cascade des MAPK, activée constitutivement dans les PTC. Nous avons hybridé sur des lames microarrays maison les différents échantillons et nous avons montré que les cultures primaires stimulées pendant des temps longs (24h et 48h) ont des profils d’expression génique qui ressemblent à ceux des PTC et constituent donc un bon modèle d’étude de cette tumeur. <p><p>La seconde partie a pour objectif de définir les phénotypes moléculaires et fonctionnels des FNAH et de les comparer aux AA. Ces deux pathologies résultent d’une mutation dans le récepteur de la TSH (TSHR) activant de manière constitutive la cascade de l’AMPc. Dans le cas des FNAH, la mutation est héréditaire et toute la glande est affectée contrairement aux AA où la mutation survient plus tard, généralement à l’âge adulte, et où seule une partie de la glande est affectée. Nous avons comparé le profil d’expression génique des FNAH avec celui des AA, par hybridation sur des lames microarrays HEEBO. L’intégration de ces différentes données montre que les AA et les FNAH sont deux sous-types différents de la même maladie: l’hyperthyroïdie génétique. Les caractéristiques de chacun de ces sous-types dépendent de l’intensité de la mutation, du nombre de cellules initialement affectées et du stade de développement au moment duquel la mutation survient.<p><p>Dans la dernière partie de ce travail, nous avons caractérisé les ATC au niveau du profil d’expression des ARNm et des miRNA par hybridation respectivement sur lames Affymetrix ou sur lames miRNA maison et au niveau de leur état mutationnel du gène p53. Le profil d’expression génique des ATC a été comparé avec celui des PTC afin de mettre en évidence des gènes différentiellement exprimés entre les 2 types de cancers, que nous avons ensuite tenté d’invalider par siRNA, dans un modèle in vitro de lignée cellulaire thyroïdienne dérivée d’un ATC (8505C). Les résultats obtenus jusqu’ici ne sont malheureusement pas prometteurs. Le profil d’expression des miRNA nous a permis d’identifier une signature de 34 miRNA caractéristique des ATC.<p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1866 seconds