Spelling suggestions: "subject:"cancer -- prognosis."" "subject:"cancer -- barognosis.""
21 |
Inhibition of Ape1's DNA Repair Activity as a Target in Cancer: Identification of Novel Small Molecules that have Translational Potential for Molecularly Targeted Cancer TherapyBapat, Aditi Ajit 02 February 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The DNA Base Excision Repair (BER) pathway repairs DNA damaged by endogenous and exogenous agents including chemotherapeutic agents. Removal of the damaged base by a DNA glycosylase creates an apurinic / apyrimidinic (AP) site. AP endonuclease1 (Ape1), a critical component in this pathway, hydrolyzes the phosphodiester backbone 5’ to the AP site to facilitate repair. Additionally, Ape1 also functions as a redox factor, known as Ref-1, to reduce and activate key transcription factors such as AP-1 (Fos/Jun), p53, HIF-1α and others. Elevated Ape1 levels in cancers are indicators of poor prognosis and chemotherapeutic resistance, and removal of Ape1 via methodology such as siRNA sensitizes cancer cell lines to chemotherapeutic agents. However, since Ape1 is a multifunctional protein, removing it from cells not only inhibits its DNA repair activity but also impairs its other functions. Our hypothesis is that a small molecule inhibitor of the DNA repair activity of Ape1 will help elucidate the importance (role) of its repair function in cancer progression as wells as tumor drug response and will also give us a pharmacological tool to enhance cancer cells’ sensitivity to chemotherapy. In order to discover an inhibitor of Ape1’s DNA repair function, a fluorescence-based high-throughput screening (HTS) assay was used to screen a library of drug-like compounds. Four distinct compounds (AR01, 02, 03 and 06) that inhibited Ape1’s DNA repair activity were identified. All four compounds inhibited the DNA repair activity of purified Ape1 protein and also inhibited Ape1’s activity in cellular extracts. Based on these and other in vitro studies, AR03 was utilized in cell culture-based assays to test our hypothesis that inhibition of the DNA repair activity of Ape1 would sensitize cancer cells to chemotherapeutic agents. The SF767 glioblastoma cell line was used in our assays as the chemotherapeutic agents used to treat gliobastomas induce lesions repaired by the BER pathway. AR03 is cytotoxic to SF767 glioblastoma cancer cells as a single agent and enhances the cytotoxicity of alkylating agents, which is consistent with Ape1’s inability to process the AP sites generated. I have identified a compound, which inhibits Ape1’s DNA repair activity and may have the potential in improving chemotherapeutic efficacy of selected chemotherapeutic agents as well as to help us understand better the role of Ape1’s repair function as opposed to its other functions in the cell.
|
22 |
Identification and assessment of gene signatures in human breast cancer / Identification et évaluation de signatures géniques dans le cancer du sein humainHaibe-Kains, Benjamin 02 April 2009 (has links)
This thesis addresses the use of machine learning techniques to develop clinical diagnostic tools for breast cancer using molecular data. These tools are designed to assist physicians in their evaluation of the clinical outcome of breast cancer (referred to as prognosis).<p>The traditional approach to evaluating breast cancer prognosis is based on the assessment of clinico-pathologic factors known to be associated with breast cancer survival. These factors are used to make recommendations about whether further treatment is required after the removal of a tumor by surgery. Treatment such as chemotherapy depends on the estimation of patients' risk of relapse. Although current approaches do provide good prognostic assessment of breast cancer survival, clinicians are aware that there is still room for improvement in the accuracy of their prognostic estimations.<p>In the late nineties, new high throughput technologies such as the gene expression profiling through microarray technology emerged. Microarrays allowed scientists to analyze for the first time the expression of the whole human genome ("transcriptome"). It was hoped that the analysis of genome-wide molecular data would bring new insights into the critical, underlying biological mechanisms involved in breast cancer progression, as well as significantly improve prognostic prediction. However, the analysis of microarray data is a difficult task due to their intrinsic characteristics: (i) thousands of gene expressions are measured for only few samples; (ii) the measurements are usually "noisy"; and (iii) they are highly correlated due to gene co-expressions. Since traditional statistical methods were not adapted to these settings, machine learning methods were picked up as good candidates to overcome these difficulties. However, applying machine learning methods for microarray analysis involves numerous steps, and the results are prone to overfitting. Several authors have highlighted the major pitfalls of this process in the early publications, shedding new light on the promising but overoptimistic results. <p>Since 2002, large comparative studies have been conducted in order to identify the key characteristics of successful methods for class discovery and classification. Yet methods able to identify robust molecular signatures that can predict breast cancer prognosis have been lacking. To fill this important gap, this thesis presents an original methodology dealing specifically with the analysis of microarray and survival data in order to build prognostic models and provide an honest estimation of their performance. The approach used for signature extraction consists of a set of original methods for feature transformation, feature selection and prediction model building. A novel statistical framework is presented for performance assessment and comparison of risk prediction models.<p>In terms of applications, we show that these methods, used in combination with a priori biological knowledge of breast cancer and numerous public microarray datasets, have resulted in some important discoveries. In particular, the research presented here develops (i) a robust model for the identification of breast molecular subtypes and (ii) a new prognostic model that takes into account the molecular heterogeneity of breast cancers observed previously, in order to improve traditional clinical guidelines and state-of-the-art gene signatures./Cette thèse concerne le développement de techniques d'apprentissage (machine learning) afin de mettre au point de nouveaux outils cliniques basés sur des données moleculaires. Nous avons focalisé notre recherche sur le cancer du sein, un des cancers les plus fréquemment diagnostiqués. Ces outils sont développés dans le but d'aider les médecins dans leur évaluation du devenir clinique des patients cancéreux (cf. le pronostique).<p>Les approches traditionnelles d'évaluation du pronostique d'un patient cancéreux se base sur des critères clinico-pathologiques connus pour être prédictifs de la survie. Cette évaluation permet aux médecins de décider si un traitement est nécessaire après l'extraction de la tumeur. Bien que les outils d'évaluation traditionnels sont d'une aide importante, les cliniciens sont conscients de la nécessité d'améliorer de tels outils.<p>Dans les années 90, de nouvelles technologies à haut-débit, telles que le profilage de l'expression génique par biopuces à ADN (microarrays), ont été mises au point afin de permettre aux scientifiques d'analyser l'expression de l'entièreté du génôme de cellules cancéreuses. Ce nouveau type de données moléculaires porte l'espoir d'améliorer les outils pronostiques traditionnels et d'approfondir nos connaissances concernant la génèse du cancer du sein. Cependant ces données sont extrêmement difficiles à analyser à cause (i) de leur haute dimensionalité (plusieurs dizaines de milliers de gènes pour seulement quelques centaines d'expériences); (ii) du bruit important dans les mesures; (iii) de la collinéarité entre les mesures dûe à la co-expression des gènes.<p>Depuis 2002, des études comparatives à grande échelle ont permis d'identifier les méthodes performantes pour l'analyse de groupements et la classification de données microarray, négligeant l'analyse de survie pertinente pour le pronostique dans le cancer du sein. Pour pallier ce manque, cette thèse présente une méthodologie originale adaptée à l'analyse de données microarray et de survie afin de construire des modèles pronostiques performants et robustes. <p>En termes d'applications, nous montrons que cette méthodologie, utilisée en combinaison avec des connaissances biologiques a priori et de nombreux ensembles de données publiques, a permis d'importantes découvertes. En particulier, il résulte de la recherche presentée dans cette thèse, le développement d'un modèle robuste d'identification des sous-types moléculaires du cancer du sein et de plusieurs signatures géniques améliorant significativement l'état de l'art au niveau pronostique. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
23 |
Mechanism of Transformation and Therapeutic Targets for Hematological Neoplasms Harboring Oncogenic KIT MutationMartin, Holly René January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Gain-of-function mutations in the KIT receptor tyrosine kinase have been associated with highly malignant human neoplasms. In particular, an acquired somatic mutation at codon 816 in the second catalytic domain of KIT involving an aspartic acid to valine substitution is found in patients with systemic mastocytosis (SM) and acute myeloid leukemia (AML). The presence of this mutation in SM and AML is associated with poor prognosis and overall survival. This mutation changes the conformation of the KIT receptor resulting in altered substrate recognition and constitutive tyrosine autophosphorylation leading to constitutive ligand independent growth. As there are currently no efficacious therapeutic agents against this mutation, this study sought to define novel therapeutic targets that contribute to aberrant signaling downstream from KITD816V that promote transformation of primary hematopoietic stem/progenitor cells in diseases such as AML and SM. This study shows that oncogenic KITD814V (murine homolog) induced myeloproliferative neoplasms (MPN) occurs in the absence of ligand stimulation, and that intracellular tyrosines are important for KITD814V-induced MPN. Among the seven intracellular tyrosines examined, tyrosine 719 alone has a unique role in regulating KITD814V-induced proliferation and survival. Residue tyrosine 719 is vital for activation of the regulatory subunit of phosphatidylinositol 3-kinase (PI3K), p85α, downstream from KITD814V. Downstream effectors of the PI3K signaling pathway, in of leukemic cells bearing KITD814V with an allosteric inhibitor of Pak or its genetic inactivation results in growth repression due to enhanced apoptosis. To assess the role of Rac GEFs in KITD814V induced transformation, EHop-016, an inhibitor of Rac, was used to specifically target Vav1, and found to be a potent inhibitor of human and murine leukemic cell growth. In vivo, the inhibition of Vav or Rac or Pak delayed the onset of MPN and rescued the associated pathology in mice. These studies provide insight on mechanisms and potential novel therapeutic targets for hematological malignancies harboring an oncogenic KIT mutation.
|
24 |
Étude de l’infiltration leucocytaire et de l’hétérogénéité du carcinome intracanalaire de la prostateDiop, Mame Kany 04 1900 (has links)
Le carcinome intracanalaire de la prostate (intraductal carcinoma of the prostate, IDC-P) est un variant histologique agressif du cancer de la prostate retrouvé dans environ 20% des spécimens de prostatectomie radicale. L’incidence de l’IDC-P augmente avec l’évolution de la maladie, elle passe de 2% chez les patients avec des cancers localisés à faible risque à plus de 50% chez les patients avec des cancers métastatiques ou récurrents. Malgré l'association de l'IDC-P à la récidive biochimique, au développement de métastases, au décès lié au cancer et à une mauvaise réponse aux traitements standards, environ 40% des hommes avec des IDC-P n’ont pas encore récidivé après cinq ans de suivi. Une portion des hommes avec des IDC-P auraient donc une forme moins agressive de la maladie qui ne nécessite pas de traitement immédiat. Nous avons émis l’hypothèse que l’IDC-P possède des caractéristiques qui permettent de stratifier les patients en catégories pertinentes pour la prise en charge. Nos objectifs étaient de (1) comparer l’infiltration leucocytaire de l’IDC-P à celui du cancer invasif habituel et le tissu bénin et (2) identifier des critères morphologiques dans l’IDC-P qui sont associés à la récidive.
La première étude a été réalisée sur les spécimens de prostatectomie radicale provenant d’une cohorte de 96 patients avec des cancers de la prostate localement avancés. Nous avons marqué par immunohistochimie les cellules exprimant CD3 (lymphocytes T), CD8 (lymphocytes T cytotoxiques), CD45RO (lymphocytes T mémoires), FoxP3 (lymphocytes T régulateurs), CD68 (macrophages), CD163 (macrophages M2), CD209 (cellules dendritiques immatures) et CD83 (cellules dendritiques matures). Le nombre de cellules positives par mm2 a ensuite été calculé dans le tissu bénin, au niveau des marges tumorales, dans le cancer et dans l’IDC-P. L’IDC-P a été retrouvé chez 33 patients (34%). Dans l'ensemble, l'infiltrat immunitaire était similaire chez les patients IDC-P-positifs et IDC-P-négatifs. Cependant, les lymphocytes T FoxP3+ (p < 0,001), les macrophages CD68+ et CD163+ (p < 0,001 pour les deux) et les cellules dendritiques CD209+ et CD83+ (p = 0,002 et p = 0,013, respectivement) étaient moins abondants dans l'IDC-P que dans le cancer invasif adjacent. De plus, les patients ont été stratifiés selon la densité de cellules immunitaires dans l’ensemble de l’IDC-P ou dans les points chauds immunitaires, en patients avec des IDC-P immunologiquement « froids » ou « chauds », avec une tendance vers un meilleur pronostic pour les patients avec des IDC-P « froids ». Un point chaud immunitaire a été défini comme la densité de cellules immunitaires la plus élevée dans les plus grandes lésions d’IDC-P. Par ailleurs, les points chauds immunitaires CD68/CD163/CD209 sont associés au développement de métastases (p = 0,014) et aux décès liés au cancer de la prostate (p = 0,009).
Dans la deuxième étude, la morphologie de l’IDC-P a été examinée sur des tissus, colorés à l’hématoxyline et l’éosine, provenant de spécimens de prostatectomies radicales de 108 hommes avec des IDC-P. Dans la cohorte test (n = 39), nous avons trouvé cinq critères morphologiques associés à une récidive biochimique précoce (avant 18 mois) : les canaux plus larges (> 573 µm de diamètre), la présence de cellules avec des noyaux à contours irréguliers, un score mitotique élevé (> 1,81 mitoses/mm2), la présence de petits vaisseaux sanguins et la présence de comédonécrose. Dans la cohorte de validation (n = 69), deux de ces critères, la présence de cellules avec des noyaux à contours irréguliers et de vaisseaux sanguins, étaient indépendamment associés à un risque accru de récidive biochimique (rapport de risque = 2,32, intervalle de confiance à 95% = 1,09–4,96, p = 0,029). De plus, lorsque nous combinons les critères, la présence de cellules avec des noyaux à contours irréguliers, de vaisseaux sanguins, de scores mitotiques élevés ou de comédonécrose est plus fortement associée à la récidive biochimique (rapport de risque = 2,74, intervalle de confiance à 95% = 1,21–6,19, p = 0,015).
Notre étude sur l’infiltration leucocytaire de l’IDC-P est la première étude décrivant l’environnement immunitaire de l'IDC-P. Nos résultats suggèrent que l’infiltration immunitaire des IDC-P est distinct de celui du cancer invasif habituel. Nous avons montré que l’IDC-P peut être classé comme immunologiquement « froid » ou « chaud », selon les densités de cellules immunitaires. Dans notre étude, les points chauds immunitaires CD68/CD163/CD209 ont prédit la progression vers une maladie métastatique et la survie spécifique au cancer. D'autres études dans de plus grandes cohortes sont nécessaires pour évaluer l'utilité clinique d'analyser l’infiltration immunitaire de l'IDC-P pour mieux prédire le pronostic des patients et améliorer l'immunothérapie chez les patients avec des cancers de la prostate mortels. Par ailleurs, nos résultats sur les critères morphologiques de l’IDC-P suggèrent que l'IDC-P peut être classé comme à faible ou à haut risque de récidive. Nous proposons de combiner deux à quatre critères, dont la présence sont des prédicteurs indépendants de récidive biochimique, pour stratifier les hommes avec des IDC-P en fonction de leur statut de risque. Les critères morphologiques délétères identifiés peuvent être facilement évalués et devront être intégrés pour une application clinique après validation dans de plus grandes cohortes. / Intraductal carcinoma of the prostate (IDC-P) is an aggressive histological variant of prostate cancer detected in approximately 20% of radical prostatectomy specimens. The incidence of IDC-P increases with disease progression, from 2% in patients with low-risk localized cancers to more than 50% in patients with metastatic or recurrent disease. Despite the association of IDC-P with biochemical recurrence, the development of metastases, cancer-related death, and poor response to standard treatments, roughly 40% of men with IDC-P remain biochemical recurrence-free after 5 years of follow-up, therefore not necessarily needing the “aggressive” label. We hypothesized that IDC-P possesses features that allow patients to be stratified into relevant categories for cancer management. Our objectives were to (1) compare the leukocyte infiltration in the IDC-P to the one found in invasive cancer and in benign tissues and (2) identify morphological features in IDC-P that are associated with recurrence.
The first study included radical prostatectomy specimens from a cohort of 96 patients with locally advanced prostate cancer. Immunohistochemical staining of CD3 (T lymphocytes), CD8 (cytotoxic T lymphocytes), CD45RO (memory T lymphocytes), FoxP3 (regulatory T lymphocytes), CD68 (macrophages), CD163 (M2 macrophages), CD209 (immature dendritic cells) and CD83 (mature dendritic cells) was performed. For each slide, the number of positive cells per mm2 in the benign tissues, tumor margins, cancer and IDC-P was calculated. IDC-P was found in a total of 33 patients (34%). Overall, the immune infiltrate was similar in the IDC-P-positive and the IDC-P-negative patients. However, FoxP3+ T cells (p < 0.001), CD68+ and CD163+ macrophages (p < 0.001 for both), and CD209+ and CD83+ dendritic cells (p = 0.002 and p = 0.013, respectively) were less abundant in the IDC-P than in the adjacent invasive cancer. Moreover, the patients were classified as having immunologically “cold” or “hot” IDC-P, according to the immune-cell densities averaged in the total IDC-P or in the immune hotspots. An immune hotspot was defined as the highest immune-cell density in the largest IDC-P lesions. Interestingly, the CD68/CD163/CD209-immune hotspots predicted metastatic dissemination (p = 0.014) and PCa-related death (p = 0.009) in a Kaplan–Meier survival analysis.
In the second study, IDC-P morphology was analyzed on tissues, stained with hematoxylin and eosin, from radical prostatectomy specimens of 108 men with IDC-P. In the test cohort (n = 39), we found five morphological criteria associated with early biochemical recurrence (before 18 months): larger duct size (> 573 µm in diameter), the presence of cells with irregular nuclear contours, a high mitotic score (> 1.81 mitoses/mm2), the presence of small blood vessels and the presence of comedonecrosis. In the validation cohort (n = 69), two of these criteria, the presence of cells with irregular nuclear contours and blood vessels, were independently associated with an increased risk of biochemical recurrence (hazard ratio = 2.32, 95% confidence interval = 1.09–4.96, p = 0.029). Additionally, when combining the criteria, the presence of any cells with irregular nuclear contours, blood vessels, high mitotic score, or comedonecrosis showed a stronger association with biochemical recurrence (hazard ratio = 2.74, confidence interval = 1.21–6.19, p = 0.015).
Our study on the leukocyte infiltration of IDC-P is the first report describing the immune cell landscape of IDC-P. Our results suggest that the immune infiltrate of IDC-P is distinct from the one in the associated invasive prostate cancer. We showed that IDC-P can be classified as immunologically “cold” or “hot”, depending on the immune-cell densities. In our study, CD68/CD163/CD209-immune hotspots predicted progression to metastatic disease and cancer-specific survival. Further studies in larger cohorts are necessary to evaluate the clinical utility of assessing specific immune infiltrates in IDC-P with regards to patient prognosis and outcomes, and eventually, the use of immunotherapy for patients with lethal prostate cancers. Furthermore, our study on the morphology of IDC-P suggests that IDC-P can be classified as low versus high-risk of recurrence. We propose combining two to four criteria, whose presence are independent predictors of biochemical recurrence, to stratify men with IDC-P according to their risk status. The defined morphologic criteria can be easily assessed and should be integrated for clinical application following validation in larger cohorts.
|
Page generated in 0.0365 seconds