Spelling suggestions: "subject:"cancer well"" "subject:"cancer cell""
41 |
Development of virus-infected cancer cell vaccineAl Yaghchi, C. January 2016 (has links)
Oncolytic viruses can be genetically modified to limit their replication in normal cells rendering them a cancer specific treatment. In addition, they can induce a 'danger signal' in the form of pathogen- and damage-associated molecular patterns leading to anti-tumour immunity. Furthermore, they can be armed with various immunomodulatory molecules to further enhance anti-tumour immunity. In this project I aim to exploit these qualities to develop a translatable cancer vaccine. Virus-infected cancer cells were injected subcutaneously in a prime/boost regimen. Dying cancer cells will release the required danger signal leading to dendritic cell activation and cross-presentation of tumour associated antigens to T cells to elicit an anti-tumour immune response. Our results in the murine pancreatic cancer model showed that vaccination with virusinfected DT6606 cells induced tumour specific immunity capable of protecting vaccinated animals against re-challenge with tumour cells. The highest level of interferon gamma production, a surrogate marker of anti-tumour immunity, was achieved when animals were primed with adenovirus-infected cells. There was no significant difference between various boost groups. To enhance the safety of the proposed protocol a secondary treatment was introduced to arrest the proliferation of tumour cells prior to injection. Our results confirmed that secondary treatment with mitomycin does not affect the induction of tumour specific immunity and it does not affect the release of pathogen-associated molecular patterns in the form of viral proteins and DNA. To test our vaccination regimen in head and neck squamous cell carcinoma (HNSCC) we develop a clinically relevant mouse model using SCC7, B4B8 and LY2 cells to replicate various clinical scenarios including locally advancing disease and post excision locoregional recurrence. Vaccinating mice with HNSCC cells pre-infected with our recently developed tumour-targeted triple-deleted adenovirus (AdTD) resulted in a cell-specific antitumour immune response. In addition, it resulted in an increase in effector memory T-cells of both CD4+ and CD8+ phenotypes. Efficacy studies showed our vaccination can significantly slow down the growth rate of tumours in locally advancing disease. This led to increase survival of the vaccinated mice although it did not reach statistical significance. To further enhance the efficacy of our vaccination regimen, we aimed to increase T cell trafficking to the tumour site. CCL25 is a gut homing chemokine. Priming T cells in the presence of CCL25 will lead to upregulation of the surface expression of α4β7 integrin. The latter is a ligand of MAdCAM-1, a cell adhesion molecule highly expressed in the gut and pancreatic tumours. The α4β7/MAdCAM-1 interaction results in preferential homing of activated T cells to these organs. We hypothesised that vaccinating mice with pancreatic tumour cells pre-infected with a CCL25-armed adenovirus will lead to increased T cell trafficking to pancreatic tumours leading to enhanced efficacy. Although we achieved encouraging results in our pilot experiment, we did not detect any significant increase in α4β7 expression once we added a secondary treatment to the vaccination protocol. Similarly, efficacy experiments in the pancreatic cancer transgenic KPC mice did not show any difference in survival between AdTD-CCL25 and the control virus although both groups showed a trend towards increased survival compared to naïve mice. In conclusion, Virus-infected cancer cell vaccine is a potentially promising immunotherapeutic strategy that can be combined with traditional cancer therapies to increase survival of HNSCC and pancreatic cancer patients.
|
42 |
Circulating tumour DNA in localised urological cancersPatel, Keval Mahendra January 2017 (has links)
There is a need for informative biomarkers in localised urological cancers. At present, no method can accurately distinguish between indolent and aggressive prostate cancers, and men often require repeated biopsies. Patients with muscle invasive bladder cancer undergo neo-adjuvant chemotherapy (NAC) to improve survival. However many do not respond to NAC, delaying definitive treatment. Cell-free mutant DNA (mutDNA) analysis represents an opportunity for non-invasive monitoring of cancer through tumour genome analysis. MutDNA derived from plasma can monitor tumour burden. There is emerging evidence that mutDNA can identify mutations from multiple clones and is abundant in adjacent body fluids. This work explores the utility of plasma and urinary mutDNA in localised prostate and bladder cancers. This thesis describes the optimisation of urinary mutDNA analysis by assessing urinary DNA processing and extraction methods using healthy volunteer and bladder cancer patient urine samples. Primer panels were designed and validated to target frequently mutated regions in prostate and bladder cancers, as well as for analysis of patient-specific mutations. Sequencing-based methods and dPCR were employed to analyse clinical samples including plasma and urine, to detect and quantify mutDNA. Molecular and clinical data were integrated to explore potential areas of application of mutDNA analysis. For bladder cancer, mutDNA was analysed from liquid-biopsy samples including plasma, cell pellets from urine and urine supernatant from multiple time-points of 17 MIBC patients undergoing NAC. I showed that mutDNA was more frequently detected and was present at higher AFs in urine compared to plasma samples. Of potential clinical relevance, I showed that the presence of mutDNA after starting NAC was associated with disease recurrence. This original contribution to knowledge could offer patients an opportunity to expedite surgical resection in a timely manner, if corroborated in large-scale trials. For prostate cancer, a TP53 specific panel was applied to men with metastatic disease, to demonstrate that clones containing TP53 mutations, which are dominant in at the metastatic stage were present in historical prostatectomy samples taken when then patient was believed to have localised disease only. Furthermore, I showed that these TP53 mutations could be detected at the localised stage of disease. To investigate the ability of mutDNA detection private clonal mutations I developed a method for higher sensitivity analysis (MRD-Seq). This was applied to a clinical cohort of 2 men with multi-focal localised prostate cancer to demonstrate the though the overall levels of mutDNA is low, private clonal mutations may be detectable. Taken together, these original contributions to knowledge could allow for less invasive surveillance of men with low risk prostate cancer and warrants further investigation. In this thesis, I used a range of molecular methods were applied to small cohorts of clinical samples from patients with urological malignancies, in an exploratory analysis. The molecular data was analysed in conjunction with clinical information to draw hypotheses on the biology and natural history of these cancer, and to suggest possible utility of mutDNA analysis in their clinical management. Some of the findings suggest areas of potential utility, which merit further validation or investigation in larger cohorts or clinical studies.
|
43 |
Mathematical modelling of cancer cell invasion of tissue : discrete and continuum approaches to studying the central role of adhesionAndasari, Vivi January 2011 (has links)
Adhesion, which includes cell-to-cell and cell-to-extracellular-matrix adhesion, plays an important role in cancer invasion and metastasis. After undergoing morphological changes malignant and invasive tumour cells, i.e., cancer cells, break away from the primary tumour by loss of cell-cell adhesion, degrade their basement membrane and migrate through the extracellular matrix by enhancement of cell-matrix adhesion. These processes require interactions and signalling cross-talks between proteins and cellular components facilitating the cell adhesion. Although such processes are very complex, the necessity to fully understand the mechanism of cell adhesion is crucial for cancer studies, which may contribute to improving cancer treatment strategies. We consider mathematical models in an attempt to understand better the roles of cell adhesion involved in cancer invasion. Using mathematical models and computational simulations, the underlying complex biological processes can be better understood and their properties can be predicted that might not be evident in laboratory experiments. Cancer cell migration and invasion of the extracellular matrix involving adhesive interactions between cells mediated by cadherins and between cell and matrix mediated by integrins, are modelled by employing two types of mathematical models: a continuum approach and an individual-based approach. In the continuum approach, we use Partial Differential Equations in which cell adhesion is treated as non-local and formulated by integral terms. In the individual-based approach, we first develop pathways for cell-cell and cell-matrix adhesion using Ordinary Differential Equations and later incorporate the pathways in a simulation environment for multiscale computational modelling. The computational simulation results from the two different mathematical models show that we can predict invasive behaviour of cancer cells from cell adhesion properties. Invasion occurs if we reduce cell-cell adhesion and increase cell-matrix adhesion and vice versa. Changing the cell adhesion properties can affect the spatio-temporal behaviour of cancer cell invasion. These results may lead to broadening our understanding of cancer cell invasion and in the long term, contributing to methods of patient treatment.
|
44 |
The role of VEGF-induced PI3K/Akt signalling pathway in head and neck cancer cell migrationIslam, Mohammad Rafiqul January 2015 (has links)
The PI3K-Akt signalling pathway is a well-established driver of cancer progression. One key process promoted by Akt phosphorylation is tumour cell motility; however the mechanism of VEGF-induced Akt phosphorylation leading to motility remains poorly understood. Previously, it has been shown that Akt phosphorylation, induced by different factors, causes both stimulation and inhibition of motility in different cell types. However, differential phosphorylation of Akt at T308 and S473 residues by VEGF and its role in head and neck cancer cell motility and progression is unknown. The cell lines investigated in this study exhibited a change in phosphorylation of Akt in response to VEGF. However, in terms of motility, VEGF stimulated oral cancer and its associated cell lines, but not normal keratinocytes or oral mucosal fibroblasts. The addition of a PI3 kinase and mTOR inhibitor, inhibited the phosphorylation of Akt and also effectively blocked VEGF-induced oral cancer cell motility, whereas only the PI3 kinase inhibitor blocked oral cancer associated fibroblast cell motility. This study therefore discloses that two different mechanisms of Akt phosphorylation control the motility potential of different cell lines. Akt phosphorylated at both residues controls oral cancer cell motility. Tobacco, alcohol and HPV infection are associated with increased risk of HNSCC. However, little is known about the underlying signalling events influencing risk. It was also aimed to investigate the relationship between these risk factors and Akt phosphorylation, to determine prognostic value. VEGF-positive HNSCC biopsies, with known HPV status, were analysed by immunohistochemistry (IHC) for Akt, phosphorylated at residues S473 and T308. Comparisons between the tissues were carried out using a Mann-Whitney U test. Associations between the variables and continuous immunohistochemical parameters were evaluated with general linear models. Patient characteristics and pAkt IHC score were analysed for possible association with overall survival by Cox proportional hazard models. Immunohistochemistry revealed that cancer patients had significantly higher levels of pAkt T308 than S473 (P < 0.001). Smoking and alcohol were found to be independent risk factors for Akt phosphorylation at T308 (P = 0.022 and 0.027, respectively). Patients with tumours positive for HPV or pAkt S473 had a poorer prognosis (P = 0.005, and 0.004, respectively). Patients who were heavy drinkers were more likely to die than non-drinkers (P = 0.003). Patients with low pAkt T308 were more likely to be HPV positive (P = 0.028). Non-drinkers were also found to have lower levels of pAkt T308 and were more likely to have tumours positive for HPV than heavy drinkers (P = 0.044 and 0.007, respectively). This study suggests different mechanisms of carcinogenesis are initiated by smoking, alcohol and HPV. The resultant data propose higher phosphorylation of Akt at T308 as a reliable biomarker for smoking and alcohol induced HNSCC progression and higher phosphorylation of Akt at S473 as a prognostic factor for HNSCC.
|
45 |
Experimental and numerical study on failure strength of aspirated cell membraneWu, Yang 15 December 2017 (has links)
The objective of this work is to develop an innovative and quantitative method to study cell failure under fluidic pressure to understand cell membrane mechanical properties. Due to lack of experimental data related to cell failure property, the current research focuses on investigating the cell failure using a micro pipette aspiration experiment method to elaborate gradually increasing hydrostatic pressure to the cell causing the membrane to deform and eventually rupture. Based on our observation, the prostate cancer cells (PC-3) deformed into a deflated and flattened shape under higher hydrostatic pressure (249 Pa) while prostate epithelial cells (PrEC LH) cells generate a spherical and rounded shape. The stress along the cell membrane was estimated from the curvature data captured from the 2D microscopic images for each pressure magnitude to quantify the damage before rupture state. From the results, non-transformed prostate epithelial cells (PrEC LH) presented a stiffer and rupture resilient property compared to transformed prostate cancer cells (PC-3) which presented a softer and vulnerable property. Besides, the alteration of shape of the aspirated membrane directly affected the stress distribution over the membrane and as a result, provoked membrane failure. Multiple pieces of research have shown a higher stiffness of healthy cells compared to cancer cells including one of the previous studies done by our group which have also found that cancer cell tends to become stiffer after exposing to fluid shear stress. The discovery of this cellular behavior and novel numerical quantification method of cell failure could advance the study of cancer cell membrane failure, cellular matrix structure, response to mechanical loadings and potentially foundation in developing new treatment for cancer other than destructive chemical treatment.
|
46 |
Detection of aldehydes in lung cancer cell culture by gas chromatography/mass spectrometry and solid-phase microextraction with on-fiber derivatizationShan, Guangqing 17 September 2007 (has links)
Aldehydes in lung cancer cell culture have been investigated using gas chromatography/mass spectrometry and solid-phase microextraction with on-fiber derivatization. In this study, the poly(dimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used and o-2,3,4,5,6-(pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA) was first loaded on the fiber. Aldehydes in the headspace of lung cancer cell culture were extracted by solid-phase microextraction (SPME) fiber and subsequently derivatized by PFBHA on the fiber. Finally, the aldehyde oximes formed on the fiber were analyzed by gas chromatography/mass spectrometry (GC/MS). Using this method, acetaldehyde decrease was found in both non-small lung cancer cell cultures studied compared to the medium control study. The results of spiking the cell culture with acetaldehyde solution showed that 5 million SK-MES-1 cell lines could consume up to 4.5 uM acetaldehyde in 15-ml medium, and 5 million NCI-H522 cell lines could consume 5.9 uM acetaldehyde in 15-ml medium. The decrease of acetaldehyde may contribute to the metabolism of lung cancer cells. It was proved that GC/MS and SPME with on-fiber derivatization is a simple, rapid, sensitive and solvent-free method for the detection of aldehydes in lung cancer cell culture.
|
47 |
Interaction of Brain Cancer Stem Cells and the Tumour Microenvironment: A Computational StudyShahbandi, Nazgol 04 January 2012 (has links)
Glioblastoma multiforme (GBM) is one of the most common and aggressive primary brain tumours, with a median patient survival time of 6-12 months in adults. It has been recently suggested that a typically small sub-population of brain tumour cells, in possession of certain defining properties of stem cells, is responsible for initiating and maintaining the tumour. More recent experiments have studied the interactions between this subpopulation of brain cancer cells and tumour microenvironmental factors such as hypoxia and high acidity. In this thesis a computational approach (based on Gillespie’s algorithm and cellular automata) is proposed to investigate the tumour heterogeneities that develop when exposed to various microenvironmental conditions of the cancerous tissue. The results suggest that microenvironmental conditions highly affect the characterization of cancer cells, including the self-renewal, differentiation and dedifferentiation properties of cancer cells.
|
48 |
Detection of aldehydes in lung cancer cell culture by gas chromatography/mass spectrometry and solid-phase microextraction with on-fiber derivatizationShan, Guangqing 17 September 2007 (has links)
Aldehydes in lung cancer cell culture have been investigated using gas chromatography/mass spectrometry and solid-phase microextraction with on-fiber derivatization. In this study, the poly(dimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used and o-2,3,4,5,6-(pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA) was first loaded on the fiber. Aldehydes in the headspace of lung cancer cell culture were extracted by solid-phase microextraction (SPME) fiber and subsequently derivatized by PFBHA on the fiber. Finally, the aldehyde oximes formed on the fiber were analyzed by gas chromatography/mass spectrometry (GC/MS). Using this method, acetaldehyde decrease was found in both non-small lung cancer cell cultures studied compared to the medium control study. The results of spiking the cell culture with acetaldehyde solution showed that 5 million SK-MES-1 cell lines could consume up to 4.5 uM acetaldehyde in 15-ml medium, and 5 million NCI-H522 cell lines could consume 5.9 uM acetaldehyde in 15-ml medium. The decrease of acetaldehyde may contribute to the metabolism of lung cancer cells. It was proved that GC/MS and SPME with on-fiber derivatization is a simple, rapid, sensitive and solvent-free method for the detection of aldehydes in lung cancer cell culture.
|
49 |
Studies of natural vitamin E forms and their synthetic derivatives for potential anticancer application in human breast cancer cell lines and mouse tumor modelsPark, Sook Kyung 14 October 2011 (has links)
Vitamin E is a group of naturally occurring fat soluble compounds which consists of eight distinct forms of tocopherols and tocotrienols. Although a well-defined physiological function of vitamin E is as an antioxidant, beneficial effects of individual vitamin E compounds on chronic human diseases such as cancer need to be better understood. Studies in this dissertation investigated potential application of gamma-tocopherol (gamma-T), gamma-tocotrienol (gamma-T3) or synthetic derivatives of tocotrienols as anticancer agents in comparison to alpha-tocopherol (alpha-T), its redox-silent acetic acid derivative (alpha-TEA) or alpha-tocotrienol (alpha-T3). Redox-silent derivatives of alpha- and gamma-T3; namely alpha-T3EA and gamma-T3EA exhibited potent anti-proliferative and proapoptotic activities in a murine mammary cancer cell line as well as in human breast cancer cell lines. Moreover, studies using human vascular endothelial cells in cell culture showed that the tocotrienol derivatives exhibited strong antiangiogenic activities which were markedly improved over those of the parent compounds. An antitumor efficacy study using the 66cl-4-GFP syngeneic mouse mammary tumor model showed that each tocotrienol derivative, when delivered in the diet, significantly suppressed mammary tumor growth; however serum and tissue concentrations of these novel compounds were lower than those of alpha-TEA, suggesting that the next generation of vitamin E derivatives will need to be modified to improve bioavailability. On the other hand, some natural-source vitamin E forms, especially gamma-forms, display anticancer activities without any chemical modification in both in vitro cell culture studies and in vivo animal models. Dietary delivery of gamma-T3 suppressed tumor growth in a syngeneic implantation mouse mammary cancer model by inhibiting cell proliferation and inducing apoptosis. Cell culture studies using human breast cancer cells showed that gamma-T3 triggered apoptosis by inducing endoplasmic reticulum (ER)-stress mediated by acid sphingomyelinase (ASMase) action. Activation of stress-activated mitogen-activated protein kinases (MAPKs), JNK and p38, was associated with gamma-T3-induced ER stress followed by upregulation of extrinsic death receptor-5 (DR5) expression in a CHOP transcription factor dependent manner. Gamma-T also triggered extrinsic apoptosis signaling by increasing DR5 mRNA, protein and cell surface expression levels followed by mitochondria-dependent apoptotic signaling. In agreement with in vitro studies, gamma-T delivered in the diet suppressed the tumor growth of MDA-MB-231-GFP human breast cancer cells in a xenograft model but the antitumor activity of gamma-T was hampered by co-administration of alpha-T. The preferential tissue retention of alpha-T over gamma-T could be overcome by use of sesamin, a dietary source of human cytochrome P450 inhibitor. Based on data presented, gamma-T and gamma-T3 show preclinical potential for cancer treatment either as single agents or in combination with other agents. / text
|
50 |
Characterization of Effects of Muc1 Expression on Epidermal Growth Factor Receptor Signaling in Breast CancerPochampalli, Mamata Rani January 2006 (has links)
EGF receptors are key regulators of cell survival and growth in normal and transformed tissues. Ligand binding results in formation of homo/hetero dimers of these receptors, followed by activation of the kinase activity and subsequent tyrosine phosphorylation of many downstream molecules. The activation of these receptors is not only mediated by the binding of their cognate ligands, but by transactivaton by other molecules as well. Recent studies have identified an oncogenic glycoprotein MUC1 as a binding partner for EGFR and that MUC1 expression can potentiate EGFR-dependent signal transduction. After receptor activation, EGFR is typically downregulated via an endocytic pathway that results in receptor degradation or recycling. We report here that MUC1 expression inhibits the degradation of ligand-activated erbB1. In addition, MUC1 expression results in prolonged activation of Akt, but not ERK1,2 MAPKinase. The MUC1-mediated protection against degradation occurs with a decrease in EGF-stimulated ubiquitination of erbB1, and an increase in erbB1 recycling. We then utilized the WAP-TGFα transgenic mouse model of breast cancer and determined that a loss of Muc1 expression dramatically alters mammary tumor progression. While 100% of WAP-TGFα/Muc1^(+/+) mice form mammary gland tumors, only 37% of WAP-TGFα/Muc1^(-/-) form tumors. Furthermore, expression of cyclin D1 expression is significantly suppressed in tumors derived from WAPTGFα/Muc1^(-/-) animals, and loss of Muc1 expression resulted in a significant inhibition in the formation of hyperplastic lesions in the mammary gland. We also observed metastatic pulmonary adenocarcinoma (1/29) and perivascular lymphoma of unknown origin (28/29) in the WAP-TGFα transgenic mice but not in the WAP TGFα/Muc1^(-/-) animals. To determine the effects of Muc1 expression on metastasis in a model lacking perivascular lymphoma, we crossed MMTV-Wnt-1 and MMTV-MUC1 transgenic mice and evaluated interactions between Muc1 and EGFR. Although the MMTV-Wnt-1 mice are non-metastatic, a majority (6/10) of the bitransgenic MMTVWnt- 1/MMTV-MUC1 formed pulmonary metastases. Furthermore, overexpression of MUC1 increases the breast cancer cell invasion in vitro. The MUC1 induced increase in invasion is found to be EGF and EGFR-kinase dependent. Collectively, these data indicate that MUC1 expression contributes to many of the hallmarks of cancer and in addition, is an important modulator of EGFR-associated mammary tumor progression.
|
Page generated in 0.0625 seconds