• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 16
  • 4
  • 4
  • 1
  • Tagged with
  • 44
  • 44
  • 10
  • 10
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Molecular characterization for oncogenic human papillomaviruses.

January 2006 (has links)
Tam On Yi Ann. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 138-152). / Abstracts in English and Chinese. / ABSTRACT --- p.I / ACKNOWLEDGMENTS --- p.VI / ABBREVIATIONS --- p.VIII / LIST OF FIGURES --- p.X / LIST OF TABLES --- p.XI / CONTENTS --- p.XII / Chapter Chapter One: --- Introduction --- p.1 / Chapter 1.1 --- History of human papillomavirus --- p.2 / Chapter 1.2 --- Biology of human papillomavirus --- p.4 / Chapter 1.2.1 --- Classification --- p.4 / Chapter 1.2.2 --- Genome structure --- p.5 / Chapter 1.2.3 --- Properties of gene products --- p.6 / Chapter 1.2.3.1 --- El gene --- p.6 / Chapter 1.2.3.2 --- E2 gene --- p.7 / Chapter 1.2.3.3 --- E4 gene --- p.7 / Chapter 1.2.3.4 --- E5 gene --- p.7 / Chapter 1.2.3.5 --- E6 gene --- p.7 / Chapter 1.2.3.6 --- E7 gene --- p.8 / Chapter 1.2.3.7 --- LI and L2 genes --- p.9 / Chapter 1.2.4 --- Latent and lytic life cycle --- p.9 / Chapter 1.2.5 --- Host specificity --- p.10 / Chapter 1.2.6 --- Site of infection --- p.11 / Chapter 1.2.7 --- Clinical manifestations --- p.11 / Chapter 1.2.8 --- Mode of infection --- p.12 / Chapter 1.2.9 --- Detection method --- p.13 / Chapter 1.2.9.1 --- DNA hybridization --- p.13 / Chapter 1.2.9.2 --- DNA amplification methods --- p.15 / Chapter 1.2.9.3 --- Hybrid capture assay --- p.16 / Chapter 1.2.9.4 --- Other DNA detection methods --- p.17 / Chapter 1.2.9.5 --- Serology --- p.18 / Chapter 1.3 --- Biology of cervical intraepithelial neoplasia and cervical cancer --- p.19 / Chapter 1.3.1 --- Grading of severity of cervical neoplasia --- p.20 / Chapter 1.3.2 --- Treatment of cervical intraepithelial lesions --- p.22 / Chapter 1.3.3 --- Prognosis after treatment --- p.22 / Chapter 1.4 --- Epidemiology of cervical cancer --- p.23 / Chapter 1.4.1 --- Global burden of disease --- p.23 / Chapter 1.4.2 --- Local burden of disease --- p.23 / Chapter 1.4.2.1 --- Incidence --- p.23 / Chapter 1.4.2.2 --- Mortality --- p.24 / Chapter 1.4.2.3 --- Age distribution --- p.24 / Chapter 1.4.2.4 --- Trends of incidence and mortality --- p.25 / Chapter 1.4.2.5 --- Morbidity --- p.25 / Chapter 1.4.2.6 --- International comparison --- p.25 / Chapter 1.5 --- Aetiology and risk factors --- p.26 / Chapter 1.5.1 --- Human papillomavirus infection --- p.26 / Chapter 1.5.2 --- Number of sexual partners --- p.26 / Chapter 1.5.3 --- Age of first sexual intercourse --- p.27 / Chapter 1.5.4 --- Presence of other sexually-transmitted diseases --- p.28 / Chapter 1.5.5 --- Cigarette smoking --- p.29 / Chapter 1.5.6 --- Diet --- p.30 / Chapter 1.5.7 --- Oral contraceptives --- p.30 / Chapter 1.5.8 --- Parity --- p.31 / Chapter 1.5.9 --- Age --- p.32 / Chapter 1.5.10 --- Socio-economic status --- p.32 / Chapter 1.6 --- Malignant transformation of human papillomavirus infection --- p.33 / Chapter 1.7 --- Primary prevention of cervical cancer - vaccine for human papillomavirus --- p.38 / Chapter 1.7.1 --- Classification of vaccine for human papillomavirus --- p.38 / Chapter 1.7.2 --- Human papillomavirus vaccination combined with human papillomavirus screening --- p.39 / Chapter 1.8 --- Secondary prevention of cervical cancer --- p.40 / Chapter 1.8.1 --- Cytology screening --- p.40 / Chapter 1.8.2 --- Detection of human papillomavirus --- p.41 / Chapter 1.9 --- Human papillomavirus and cervical cancer --- p.43 / Chapter 1.9.1 --- Risk association between cervical cancer and human papillomavirus infection --- p.43 / Chapter 1.9.2 --- World-wide prevalence of human papillomavirus types in cervical cancer --- p.43 / Chapter 1.9.3 --- Human papillomavirus prevalence in China and Hong Kong --- p.44 / Chapter Chapter Two: --- Materials and Methods --- p.49 / Chapter 2.1 --- Ethics approval --- p.50 / Chapter 2.2 --- Sample management --- p.50 / Chapter 2.2.1 --- Sample collection --- p.50 / Chapter 2.2.2 --- Sample storage and labelling --- p.50 / Chapter 2.3 --- DNA extraction --- p.51 / Chapter 2.3.1 --- Physical extraction 226}0ؤ heating --- p.51 / Chapter 2.3.2 --- Chemical extraction - Qiagen kit extraction --- p.51 / Chapter 2.4 --- Polymerase chain reaction --- p.53 / Chapter 2.4.1 --- Controls for polymerase chain reaction --- p.53 / Chapter 2.4.2 --- Beta-globin polymerase chain reaction --- p.53 / Chapter 2.4.3 --- HPV 52-specific human papillomavirus polymerase chain reaction --- p.56 / Chapter 2.4.4 --- Consensus human papillomavirus L1 open-reading frame polymerase chain reaction --- p.57 / Chapter 2.4.4.1 --- GP5+/6+ polymerase chain reaction --- p.57 / Chapter 2.4.4.2 --- MY09/11 polymerase chain reaction --- p.60 / Chapter 2.4.4.3 --- PGMY09/11 polymerase chain reaction --- p.63 / Chapter 2.5 --- Genotyping of human papillomavirus --- p.65 / Chapter 2.5.1 --- Restriction fragment length polymorphism --- p.65 / Chapter 2.5.2 --- Reverse line-blot hybridization --- p.67 / Chapter 2.6 --- Sequencing --- p.69 / Chapter 2.6.1 --- Sequencing for HPV genotyping --- p.69 / Chapter 2.6.2 --- Sequencing of HPV 52 E6 and E7 genes --- p.69 / Chapter 2.7 --- Statistical analysis --- p.70 / Chapter Chapter Three --- Study I 226}0ؤ Comparison of Three HPV DNA Detection Methods --- p.71 / Chapter 3.1 --- Objective --- p.72 / Chapter 3.2 --- Study plan --- p.72 / Chapter 3.3 --- Results --- p.74 / Chapter 3.3.1 --- Study population --- p.74 / Chapter 3.3.2 --- Optimisation of polymerase chain reactions --- p.74 / Chapter 3.3.3 --- Method 1: GP5+/6+ PCR followed by cycle sequencing --- p.76 / Chapter 3.3.4 --- Method 2: MY09/11 PCR followed by restriction fragment length polymorphism --- p.76 / Chapter 3.3.5 --- Method 3: PGMY09/11 PCR followed by reverse line-blot hybridization --- p.77 / Chapter 3.3.6 --- Prevalence and genotype distribution of human papillomavirus infection in cervical cancer patients --- p.81 / Chapter 3.3.7 --- Detection of multiple infections --- p.81 / Chapter 3.3.8 --- Sensitivity of the detection methods --- p.82 / Chapter 3.3.9 --- Comparison of prevalence rates of human papillomavirus genotypes --- p.82 / Chapter 3.3.10 --- Comparison of genotype distribution in Hong Kong cervical cancer patients with other geographic regions --- p.83 / Chapter 3.3.11 --- Follow-up investigation of GP5+/6+ primer binding site in HPV 52 --- p.84 / Chapter 3.4 --- Discussion --- p.91 / Chapter Chapter Four --- Study II - Post-treatment Follow-up Study on Patients with High-grade Cervical Lesions --- p.95 / Chapter 4.1 --- Objective --- p.96 / Chapter 4.2 --- Study plan --- p.96 / Chapter 4.3 --- Results --- p.97 / Chapter 4.3.1 --- Study population --- p.97 / Chapter 4.3.2 --- The prevalence and genotype distribution of human papillomavirus infection before treatment --- p.98 / Chapter 4.3.3 --- Persistent human papillomavirus infection --- p.99 / Chapter 4.3.4 --- Risk-factors associated with persistent human papillomavirus infection --- p.99 / Chapter 4.3.4.1 --- Excision margin status --- p.99 / Chapter 4.3.4.2 --- Multiple human papillomavirus infections --- p.99 / Chapter 4.4 --- Discussion --- p.108 / Chapter 4.4.1 --- Prevalence and genotype distribution of human papillomavirus in high-grade cervical neoplasia --- p.108 / Chapter 4.4.2 --- Risk factors for cervical intraepithelial neoplasia recurrence --- p.110 / Chapter Chapter Five --- Study III - Investigation of Human Papillomavirus 52 Sequence Variation --- p.115 / Chapter 5.1 --- Objective --- p.116 / Chapter 5.2 --- Study plan --- p.116 / Chapter 5.3 --- Results --- p.117 / Chapter 5.3.1 --- Study population --- p.117 / Chapter 5.3.2 --- Nucleotide sequence variations --- p.119 / Chapter 5.3.2.1 --- Human papillomavirus 52 E6 open-reading frame --- p.119 / Chapter 5.3.2.2 --- Human papillomavirus 52 E7 open-reading frame --- p.123 / Chapter 5.3.2.3 --- Comparison of nucleotide sequence variations in HPV 52 E6 and E7 open-reading frame --- p.128 / Chapter 5.4 --- Discussion --- p.134 / References --- p.137
32

Determination of the differential roles of wild-type and C-terminal truncated hepatitis B virus X protein in hepatocarcinogenesis and construction of inducible cells expressing truncated HBx.

January 2007 (has links)
Li, Sai Kam. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 162-179). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract in Chinese (摘要) --- p.ii / Acknowledgements --- p.iii / Table of Content --- p.iv / Abbreviations --- p.xi / List of Figures --- p.xiv / List of Tables --- p.xvii / Chapter CHAPTER 1 --- INTRODUCTION / Chapter 1.1 --- Hepatitis B Virus / Chapter 1.1.1 --- General information --- p.1 / Chapter 1.1.2 --- Classification --- p.2 / Chapter 1.1.3 --- Virus life cycle and genome --- p.3 / Chapter 1.1.4 --- Hepatitis B virus X protein (HBx) --- p.7 / Chapter 1.2 --- Enigmatic functions of HB --- p.x / Chapter 1.2.1 --- HBx as a transactivator --- p.10 / Chapter 1.2.2 --- HBx as a cell cycle regulator --- p.12 / Chapter 1.2.3 --- HBx as an apoptosis modulator --- p.13 / Chapter 1.3 --- Etiology of HBV-mediated hepatocarcinogenesis --- p.14 / Chapter 1.4 --- Clinical mutants of HBV --- p.16 / Chapter 1.5 --- Hypothesis and aims of the research --- p.16 / Chapter 1.6 --- Basis of Tet-On system --- p.18 / Chapter CHPATER 2 --- EXPERIMENT MATERIALS / Chapter 2.1 --- Cell culture / Chapter 2.1.1 --- Cell-lines --- p.21 / Chapter 2.1.2 --- Culture medium --- p.22 / Chapter 2.1.3 --- Culture medium supplements --- p.23 / Chapter 2.2 --- Reagents for subcloning / Chapter 2.2.1 --- Reagents for polymerase chain reaction (PCR) --- p.24 / Chapter 2.2.2 --- Reagents for restriction enzyme digestion --- p.24 / Chapter 2.2.3 --- Reagents for ligation --- p.25 / Chapter 2.2.4 --- Reagents for electrophoresis --- p.25 / Chapter 2.2.5 --- Reagents for E. coli DH5a preparation --- p.25 / Chapter 2.2.6 --- Materials for bacterial culture work --- p.27 / Chapter 2.3 --- Reagents for subcellular localization study / Chapter 2.3.1 --- Reagents for cell staining --- p.28 / Chapter 2.3.2 --- Reagents for mounting slides --- p.29 / Chapter 2.3.3 --- Materials for site-directed mutagenesis --- p.29 / Chapter 2.4 --- Reagents for cell cycle analysis and cellular proliferation / Chapter 2.4.1 --- Reagents for cell cycle analysis --- p.29 / Chapter 2.4.2 --- Reagents for cellular proliferation study --- p.30 / Chapter 2.5 --- Reagents for protein expression study / Chapter 2.5.1 --- Cell lysis buffer --- p.30 / Chapter 2.5.2 --- Reagents for SDS-PAGE --- p.30 / Chapter 2.5.3 --- Reagents for Western blot --- p.33 / Chapter 2.5.4 --- Antibodies --- p.34 / Chapter 2.6 --- Reagents for gene expression study / Chapter 2.6.1 --- Reagents for RNA extraction --- p.36 / Chapter 2.6.2 --- Reagents for first strand cDNA synthesis --- p.37 / Chapter 2.6.3 --- Reagents for real-time PCR --- p.37 / Chapter 2.7 --- Reagents for establishment of Tet-On inducible stable cell-lines / Chapter 2.7.1 --- Reagents for MTT assay --- p.38 / Chapter 2.7.2 --- Reagents for selection of stable clones --- p.38 / Chapter 2.8 --- Vectors used in the project / Chapter 2.8.1 --- Vectors for subcellular localization study --- p.39 / Chapter 2.8.2 --- Vectors for establishment of Tet-on inducible cell-lines --- p.39 / Chapter 2.9 --- Primers used in the project / Chapter 2.9.1 --- Primers used for subcloning --- p.42 / Chapter 2.9.2 --- Primers used for site-directed mutagenesis --- p.43 / Chapter 2.9.3 --- Primers used in real-time chain polymerase reaction --- p.43 / Chapter CHAPTER 3 --- RESEARCH METHODS / Chapter 3.1 --- Subcloning of HBx and mutant genes into a green fluorescence protein (GFP) expression vector / Chapter 3.1.1 --- Amplification of HBxWt,HBxΔC44 and HBxAN60 genes --- p.45 / Chapter 3.1.2 --- Purification of PCR products --- p.46 / Chapter 3.1.3 --- Restriction enzyme digestion --- p.47 / Chapter 3.1.4 --- Ligation of gene products with pEGFP-C 1 vector --- p.47 / Chapter 3.1.5 --- Preparation of chemically competent bacterial cells E. coli strain DH5α --- p.47 / Chapter 3.1.6 --- Transformation of the ligation product into competent cells --- p.48 / Chapter 3.1.7 --- PCR confirmation of successful ligation --- p.48 / Chapter 3.1.8 --- Small scale preparation of bacterial plasmid DNA --- p.49 / Chapter 3.1.9 --- DNA sequencing of the cloned plasmid DNA --- p.50 / Chapter 3.1.10 --- Large scale preparation of target recombinant plasmid DNA --- p.50 / Chapter 3.2 --- Subcellular localization pattern study / Chapter 3.2.1 --- Cell transfection --- p.51 / Chapter 3.2.2 --- Mitochondria and nucleus staining --- p.52 / Chapter 3.2.3 --- Epi-fluorescence microscopy --- p.53 / Chapter 3.2.4 --- Analysis of fluorescence images --- p.53 / Chapter 3.2.5 --- In vitro site-directed mutagenesis --- p.53 / Chapter 3.3 --- Cell cycle phase analysis with flow cytometry / Chapter 3.3.1 --- Cell transfection --- p.55 / Chapter 3.3.2 --- Cell staining --- p.55 / Chapter 3.3.3 --- Flow cytometry --- p.55 / Chapter 3.4 --- Cellular proliferation quantification by BrdU proliferation assay / Chapter 3.4.1 --- Cell transfection --- p.57 / Chapter 3.4.2 --- BrdU ELISA measurement --- p.57 / Chapter 3.5 --- Protein expression / Chapter 3.5.1 --- Cell lysate collection --- p.58 / Chapter 3.5.2 --- Quantification of protein samples --- p.59 / Chapter 3.5.3 --- SDS-PAGE --- p.59 / Chapter 3.5.4 --- Western blot --- p.60 / Chapter 3.5.5 --- Western blot luminal detection --- p.60 / Chapter 3.6 --- Gene expression / Chapter 3.6.1 --- Primer design --- p.61 / Chapter 3.6.2 --- Cell transfection --- p.61 / Chapter 3.6.3 --- RNA extraction --- p.61 / Chapter 3.6.4 --- Reverse transcription for first strand complementary DNA (cDNA) --- p.63 / Chapter 3.6.5 --- Quantitative real-time PCR --- p.63 / Chapter 3.7 --- Establishment of Tet-On inducible stable cell-lines / Chapter 3.7.1 --- Subcloning of HBx gene into pTRE2 vector --- p.64 / Chapter 3.7.2 --- Construction of WRL68/Tet-On stable cell-lines --- p.64 / Chapter 3.7.3 --- Construction of WRL68/Tet-On HBx and mutants expression cell-lines --- p.68 / Chapter 3.7.4 --- Characterization of Tet-On gene expression monoclones --- p.69 / Chapter 3.8 --- Statistical analyses --- p.70 / Chapter CHPATER 4 --- STUDY ON MITOCHONDRIA TARGETING / Chapter 4.1 --- Establishment of pEGFP-Cl-HBx and mutants constructs --- p.71 / Chapter 4.2 --- Transactivation C-terminus domain is essential for granular localization --- p.73 / Chapter 4.3 --- Wild-type HBx localizes in mitochondria --- p.76 / Chapter 4.4 --- C-terminal transactivation domain is sufficient for mitochondria targeting --- p.79 / Chapter 4.5 --- Mapping of the HBx region crucial for mitochondria targeting --- p.81 / Chapter 4.6 --- The 111-117 amino acids in HBx do not work as a signal peptide --- p.83 / Chapter 4.7 --- Site-directed mutagenesis identifies the key amino acid at 115 in HBx for mitochondrial targeting --- p.85 / Chapter CHAPTER 5 --- CELL PROLIFERATION AND REGULATION / Chapter 5.1 --- Alteration of S-phase distribution in cell cycle --- p.88 / Chapter 5.2 --- Analysis of DNA synthesis using BrdU proliferation ELISA --- p.92 / Chapter 5.3 --- Differential molecular regulation of cell cycle --- p.94 / Chapter 5.4 --- Regulation of the mRNA expression levels of cyclin-dependent kinases inhibitors p2raf/cipl and p27kipl --- p.98 / Chapter CHAPTER 6 --- TRANSACTIVATION AND RAS/RAF/MAPK PHOSPHORYLATION / Chapter 6.1 --- Determination of p53-dependency of p21、vaf/cipl expression --- p.101 / Chapter 6.2 --- Ras/Raf/MAPK pathway activation by HBx variants / Chapter 6.2.1 --- ERK1/2 phophorylation by HBx variants --- p.104 / Chapter 6.2.2 --- ERK inhibition blocks the regulation effect on p53Wt and p21waf/cipl --- p.107 / Chapter 6.3 --- Transactivation activity on oncogenes/ proto-oncogenes / Chapter 6.3.1 --- Effect on c-myc (NM´ؤ002467) mRNA expression --- p.109 / Chapter 6.3.2 --- Effect on RhoC (NM_017744) and Rabl4 (NM´ؤ016322) mRNA expression --- p.112 / Chapter CHAPTER 7 --- CONSTRUCTION OF TET-ON INDUCIBLE CELL-LINES / Chapter 7.1 --- Establishment of WRL/Tet-On monoclonal cell-lines Page / Chapter 7.1.1 --- Determination of geneticin selection dosage --- p.116 / Chapter 7.1.2 --- Selection of the best WRL/TOn clone using luciferase assay --- p.118 / Chapter 7.2 --- Establishment of inducible WRL/TOn/Gene monoclonal cell-lines / Chapter 7.2.1 --- Determination of hygromycin selection dosage --- p.120 / Chapter 7.2.2 --- Selection of positive WRL/TOn/Gene clones with viral genes --- p.122 / Chapter 7.3 --- Characterization of TOXDC1 cell-line / Chapter 7.3.1 --- Cell morphology --- p.125 / Chapter 7.3.2 --- Growth pattern of TOXDC1 --- p.126 / Chapter 7.3.3 --- HBxAC44 induced p21waf/cipl mRNA expression --- p.127 / Chapter 7.3.4 --- Doxycycline concentration dependent HBxAC44 expression in TOXDC1 --- p.129 / Chapter CHAPTER 8 --- DISCUSSION / Chapter 8.1 --- Selection of cell model / Chapter 8.1.1 --- Selection of cell models --- p.130 / Chapter 8.1.2 --- Selection of truncation mutant --- p.131 / Chapter 8.2 --- Differential sub-cellular localization of HBx and its variants / Chapter 8.2.1 --- Mechanisms of mitochondria targeting --- p.132 / Chapter 8.2.2 --- Mitochondria as site of HBx-induced apoptosis --- p.134 / Chapter 8.2.3 --- Stimulation of calcium release from mitochondria by wild-type HBx --- p.135 / Chapter 8.3 --- Cell cycle distribution profiling and its regulations / Chapter 8.3.1 --- Cell cycle pattern and cell proliferation --- p.136 / Chapter 8.3.2 --- Differential cell cycle molecular pathway activation --- p.138 / Chapter 8.4 --- Ras/Raf/MAPK mediated transactivation by HBxWt and its mutants / Chapter 8.4.1 --- p53-mediated p21waf/cipl expression --- p.142 / Chapter 8.4.2 --- ERK-mediated p21waf/cipl and wild-type p53 mRNA expression --- p.143 / Chapter 8.4.3 --- Regulation of oncogenes/ proto-oncogenes expression --- p.147 / Chapter 8.5 --- General discussions on differential effects of HBxWt and HBxAC44 --- p.149 / Chapter 8.6 --- Establishment of Tet-On/HBxAC44 cell-line TOXDC1 --- p.153 / Chapter 8.7 --- Conclusions --- p.154 / Chapter 8.8 --- Future Prospects / Chapter 8.8.1 --- From mitochondria targeting to calcium signaling --- p.157 / Chapter 8.8.2 --- Construction of a complete cell cycle regulation pathway --- p.158 / Chapter 8.8.3 --- Elucidation of the transcriptional transactivation regulation --- p.159 / Chapter 8.8.4 --- To make the best use of the Tet-on stable cell-line TOXDC1 --- p.159 / Chapter 8.8.5 --- Study with other carboxy-terminal truncation mutants --- p.160 / Chapter 8.8.6 --- In vivo study --- p.160 / REFERENCES --- p.162
33

Integration of human papillomavirus is not a necessary mechanism in cervical cancer development. / Ren lei ru tou liu bing du ji yin zheng he bing fei zi gong jing ai xing cheng de bi yao ji li / CUHK electronic theses & dissertations collection

January 2012 (has links)
子宮頸癌是女性的主要癌症殺手,而人類乳頭瘤病毒 (HPV) 則是子宮頸癌形成的必要條件之一。HPV16型及HPV18型是全球最普遍的高危型HPV;而另一方面,HPV52及HPV58兩型在東亞地區的流行程度比世界其他地區為高。 / 過往有科學研究顯示HPV病毒載量的高低是引致高度癌前病變的重要決定因素,也有研究指出病毒載量與病變的嚴重程度成正比例,但同時亦有研究指兩者並無關係。HPV基因組可以兩種物理形態存在:游離型及整合型。HPV的E2基因可對E6及E7致癌基因產生重要的調節作用,而當HPV病毒與宿主染色體整合後,可使E2基因斷裂,因而令控制E6及E7致癌基因表達的負反饋基制失效。 / 本研究假設高病毒載量及由HPV基因組整合所造成的E2基因斷裂,並非引致子宮頸癌的僅一途徑。本研究分析了在不同程度的子宮頸細胞病變下,HPV16型、18型、52型及58型的病毒載量及基因整合情況。其中,有關HPV16型的研究部份更深入地探討了E6/7 mRNA的轉錄水平、E2和LCR的序列變異及E2結合位點的甲基化情況,最終希望能找出除了病毒基因整合之外的另一種致癌機理。 / 本研究的結果顯示,在不同HPV型所引致的子宮頸細胞病變中,病毒載體及病變程度之間的關係也存有差異;而根據管家基因的數量來為細胞DNA標準化,對準確分析不同程度子宮頸細胞病變的實驗結果至關重要。本研究的一項重要發現是部份侵襲性癌細胞只含有游離型HPV基因組;而在只含游離HPV基因組的侵襲性子宮頸癌樣本中,有三種E6/E7 mRNA的抄錄本水平與只含整合型基因組的樣本相若,反映在只含游離型HPV基因組的侵襲性子宮頸癌樣本中,E6/ E7 mRNA的表達量亦有上調。最重要的是,此表達量的上調並非由基因整合或E2基因斷裂所引致。 / 在只含有游離型病毒基因組的侵襲性子宮頸癌樣本中,E6及E7致癌基因表達上調的另一種機理,很可能是HPV16啟動區內E2結合位點上的CpG位點出現甲基化。這項觀察解釋及支持了當E2蛋白因結合位點甲基化而失去對E6及E7基因轉錄的抑制功能時,E6及E7致癌蛋白仍能保持高水平,而兩種蛋白產生協同作用,令細胞轉型及出現癌變。總結之言,本實驗也肯定了HPV整合並非導致子宮頸癌形成的唯一機理。 / Cervical cancer is a major cause of cancer-related death in women worldwide. Human papillomavirus (HPV) is essential, though not sufficient, to cause cervical cancer. HPV16 and HPV18 are the most prevalent high-risk types worldwide, whereas, HPV52 and HPV58 also show a notable higher prevalence in East Asia than in other parts of the world. / Studies have suggested that HPV viral load is an important determinant for the development of high-grade lesions. While some studies observed a positive correlation between viral load and disease severity, others have reported no association. The HPV genome can exist in two physical forms, episomal or integrated. The E2 gene, encoded by HPV has an important role in the regulation of E6 and E7 viral oncogenes. When HPV integrates into the host chromosome, it may result in disruption of the E2 gene thereby its control on the expression of the E6 and E7. / The hypothesis for this study was that high viral load and disruption of E2 gene associated with integration of HPV into the host genome was not the only pathway leading to cervical cancer development. In this study, the viral load and integration profile for HPV types 16, 18, 52 and 58 among different severity of cervical lesions were analyzed. Further detailed studies were performed on HPV16 with emphases on E6/E7 mRNA transcript levels, E2 and LCR sequence variation and the methylation status of two E2 binding sites. The ultimate aim was to determine what other alternative mechanisms exist apart from viral integration to drive the oncogenicity of HPV that lead to the development of cervical cancer. / The results showed that the relationship between viral load and disease varied between different HPV types and that normalization of cellular DNA input using a housekeeping gene was crucial for accurate interpretation among different cervical lesion grades. A key finding from this study was that a substantial proportion of invasive cervical carcinomas were found to contain the purely episomal form of the HPV genome. The levels of the three E6/E7 mRNA transcripts species in invasive cervical carcinomas containing the pure episomal form of the viral genome were found to be similar to those with pure integrated forms. This observation suggested that invasive cervical carcinoma samples containing the episomal form of the HPV genome were also mediated by the up-regulated E6/E7 mRNA expression. More importantly, this up-regulation in E6/E7 mRNA expression did not depend on integration and disruption of the E2 gene. / The alternative mechanism that up-regulated of the expression of E6 and E7 oncogene found in invasive cervical carcinoma samples harbouring the episomal form of the viral genome was likely to be a consequence of methylation of CpG sites in the two E2 binding sites at the promoter region of HPV16. This observation explained and supported that the repressive role of E2 on E6 and E7 transcriptional regulation was abolished due to methylation of the E2 binding sites, and that a sustained level of the E6 and E7 oncoproteins was maintained, working in synergy in cell transformation and in carcinogenesis. These observations confirmed the hypothesis that HPV integration was not the only mechanism leading to the development of cervical cancer. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Cheung, Lai Ken Jo. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 233-248). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Acknowledgements --- p.I / Abstract of thesis --- p.IV / 論文摘要 --- p.VII / Publications --- p.IX / Contents --- p.X / Figures --- p.XV / Tables --- p.XVIII / Abbreviations --- p.XIX / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Cervical Cancer --- p.2 / Chapter 1.1.1 --- Cervical Cytology Screening --- p.3 / Chapter 1.1.2 --- Classification System for Cervical Squamous Cell Dysplasia --- p.4 / Chapter 1.1.3 --- Histological Grading of Cervical Lesions --- p.6 / Chapter 1.1.4 --- Development of Cervical Cancer --- p.6 / Chapter 1.2 --- Structure of HPV --- p.7 / Chapter 1.1.1 --- HPV Genome Organization --- p.8 / Chapter 1.1.2 --- The E1 Protein --- p.10 / Chapter 1.1.3 --- The E2 Protein --- p.10 / Chapter 1.1.4 --- The E4 Protein --- p.13 / Chapter 1.1.5 --- The E5 Protein --- p.13 / Chapter 1.1.6 --- The E6 Protein --- p.14 / Chapter 1.1.7 --- The E7 Protein --- p.14 / Chapter 1.1.8 --- The L1 Protein --- p.15 / Chapter 1.1.9 --- The L2 Protein --- p.16 / Chapter 1.1.10 --- The Long Control Region --- p.17 / Chapter 1.3 --- HPV and Cervical Cancer --- p.19 / Chapter 1.3.1 --- HPV is an Etiological Cause of Cervical Cancer --- p.19 / Chapter 1.3.2 --- Establishment of HPV Infection --- p.20 / Chapter 1.3.3 --- Regulation and Control of HPV Viral Gene Transcription --- p.23 / Chapter 1.3.4 --- Viral Oncogene Expression by Alternative RNA Splicing --- p.23 / Chapter 1.3.5 --- DNA Methylation in Viral Oncogene Expression --- p.24 / Chapter 1.3.6 --- The Roles of E6 and E7 Protein in Cervical Carcinogenesis --- p.26 / Chapter Chapter 2 --- Controversies and Hypothesis --- p.33 / Chapter 2.1 --- Controversies in Mechanism of Cervical Carcinogenesis --- p.34 / Chapter 2.1.1 --- Viral Integration and Risk of Cervical Cancer Development --- p.34 / Chapter 2.1.2 --- Viral Load and Risk of Cervical Cancer Development --- p.35 / Chapter 2.2 --- Hypothesis of Study --- p.37 / Chapter 2.2.1 --- Study Design --- p.38 / Chapter Chapter 3 --- Materials and Methods --- p.41 / Chapter 3.1 --- Patient Recruitment and Sample Preparation --- p.42 / Chapter 3.1.1 --- Study subject recruitment --- p.42 / Chapter 3.1.2 --- Collection of cytology samples --- p.43 / Chapter 3.1.3 --- Collection of cervical biopsy samples --- p.44 / Chapter 3.2 --- Nucleic Acid Extraction and Preparation --- p.44 / Chapter 3.2.1 --- Extraction of DNA from cervical cytology samples --- p.44 / Chapter 3.2.2 --- Extraction of DNA from cervical biopsy samples --- p.45 / Chapter 3.2.3 --- Extraction of RNA from cervical cytology samples --- p.45 / Chapter 3.2.4 --- Extraction of RNA from cervical biopsy samples --- p.46 / Chapter 3.3 --- Detection and Genotyping of Human Papillomavirus --- p.46 / Chapter 3.4 --- Determination of Viral Load using Real-Time Polymerase Chain Reaction --- p.47 / Chapter 3.4.1 --- Optimization of HPV16, 18, 52 and 58 E7 real-time PCR --- p.48 / Chapter 3.4.2 --- Optimization of housekeeping gene real-time PCR --- p.50 / Chapter 3.4.3 --- Determination of HPV16, 18, 52 and 58 viral load --- p.50 / Chapter 3.5 --- Determination of HPV Genome Physical Status --- p.53 / Chapter 3.5.1 --- HPV E2 gene primer design --- p.53 / Chapter 3.5.2 --- Optimization of HPV16, 18, 52 and 58 E2 Real-time PCR --- p.56 / Chapter 3.5.3 --- Determination of the HPV genome physical status --- p.59 / Chapter 3.6 --- Evaluation of Housekeeping Genes for Normalization of Viral Gene Expression --- p.62 / Chapter 3.6.1 --- Optimization of housekeeping gene real-time PCR --- p.62 / Chapter 3.6.2 --- Quantitation of RNA and DNase treatment --- p.66 / Chapter 3.6.3 --- cDNA synthesis from the extracted RNA --- p.67 / Chapter 3.6.4 --- Detection of five housekeeping gene levels from cervical cytology samples by real-time PCR --- p.67 / Chapter 3.6.5 --- Data analyses --- p.68 / Chapter 3.7 --- Quantitation of HPV16 mRNA Transcripts --- p.69 / Chapter 3.7.1 --- Preparation of RNA from CaSki cells --- p.69 / Chapter 3.7.2 --- Amplification of mRNA transcripts from CaSki cells --- p.69 / Chapter 3.7.3 --- Amplification of artificial mRNA transcript E6*II --- p.73 / Chapter 3.7.4 --- Gel purification of mRNA transcript amplicons --- p.73 / Chapter 3.7.5 --- Cloning of E6 mRNA transcripts --- p.74 / Chapter 3.7.6 --- Confirmation of the mRNA transcript inserts --- p.74 / Chapter 3.8 --- Quantitation HPV16 E6 mRNA Transcript Levels Using Real-Time PCR --- p.79 / Chapter 3.8.1 --- mRNA transcript primer and probe design --- p.79 / Chapter 3.8.2 --- Optimization of real-time PCR for the detection of mRNA transcripts --- p.82 / Chapter 3.8.3 --- Determination of mRNA transcript levels from invasive carcinomas --- p.83 / Chapter 3.8.4 --- Normalization of mRNA transcript expression with a housekeeping gene --- p.84 / Chapter 3.9 --- Sequence Variation of the HPV16 E2 and Long Control Region --- p.84 / Chapter 3.9.1 --- Identification of sequence variation of the E2 gene --- p.84 / Chapter 3.9.2 --- Identification of sequence variation of the long control region --- p.87 / Chapter 3.1 --- Detection of Methylation Status of E2BS1 and E2BS2 on the LCR using Pyrosequencing --- p.87 / Chapter 3.10.1 --- Bisulfite DNA conversion --- p.87 / Chapter 3.10.2 --- Amplification of E2 binding site regions on the LCR --- p.88 / Chapter 3.10.3 --- Purification of PCR product prior to pyrosequencing --- p.92 / Chapter 3.10.4 --- Quantitation of methylation using pyrosequencing --- p.92 / Chapter Chapter 4 --- Results --- p.93 / Chapter Hypothesis 1 --- p.94 / Chapter Results of Study Part: 1 --- p.95 / Chapter 4.1 --- Human Papillomavirus Type 16 Viral Load and Genome Physical Status --- p.96 / Chapter 4.1.1 --- E7 viral load --- p.96 / Chapter 4.1.2 --- Viral genome physical status --- p.100 / Chapter 4.1.3 --- E2 disruption site --- p.105 / Chapter 4.2 --- Human Papillomavirus Type 18 Viral Load and Genome Physical Status --- p.107 / Chapter 4.2.1 --- E7 viral load --- p.107 / Chapter 4.2.2 --- Viral genome physical status --- p.110 / Chapter 4.2.3 --- E2 disruption site --- p.113 / Chapter 4.2.4 --- Infection status --- p.116 / Chapter 4.2.5 --- Adeno/adenosquamous carcinoma versus squamous cell carcinoma --- p.119 / Chapter 4.3 --- Human Papillomvirus Type 52 Viral Load and Genome Physical Status --- p.120 / Chapter 4.3.1 --- E7 viral load --- p.120 / Chapter 4.3.2 --- Viral genome physical status --- p.123 / Chapter 4.3.3 --- E2 disruption site --- p.126 / Chapter 4.3.4 --- Infection status --- p.129 / Chapter 4.4 --- Human Papillomavirus Type 58 Viral Load and Genome Physical Status --- p.131 / Chapter 4.4.1 --- E7 viral load --- p.131 / Chapter 4.4.2 --- Viral genome physical status --- p.133 / Chapter 4.4.3 --- E2 disruption site --- p.134 / Chapter 4.4.4 --- Infection status --- p.137 / Chapter 4.5 --- Summary of Study Part 1: --- p.140 / Chapter Hypothesis 2 --- p.141 / Chapter Results of Study Part 2: --- p.142 / Chapter 4.6 --- Housekeeping Gene mRNA Expression Level --- p.143 / Chapter 4.6.1 --- Expression levels across different grades of cervical lesion --- p.143 / Chapter 4.6.2 --- Expression stability of housekeeping genes --- p.145 / Chapter 4.7 --- Summary of Study Part 2: --- p.149 / Chapter Results of Study Part: 3 --- p.150 / Chapter 4.8 --- HPV16 mRNA Transcript Expression Level --- p.151 / Chapter 4.8.1 --- HPV16 viral genome physical status --- p.151 / Chapter 4.8.2 --- HPV16 E2 disruption site --- p.151 / Chapter 4.8.3 --- Expression level of E6/E7 mRNA transcripts --- p.155 / Chapter 4.8.4 --- Expression level of E6/E7 mRNA transcripts and viral genome physical status --- p.157 / Chapter 4.8.5 --- Expression level of E6/E7 mRNA transcripts and E2 gene disruption status --- p.161 / Chapter 4.9 --- Summary of Study Part 3: --- p.163 / Chapter Hypothesis 3 --- p.165 / Chapter Results of Study Part 4: --- p.166 / Chapter 4.1 --- HPV 16 E2 Gene Sequence Variation --- p.167 / Chapter 4.10.1 --- Sequence variation of E2 gene --- p.167 / Chapter 4.10.2 --- Sequence variation and viral genome physical status --- p.168 / Chapter 4.10.3 --- Sequence variation in the E2 binding sites --- p.169 / Chapter 4.10.4 --- Sequence variations of E2 in HPV16 cancer derived cell lines --- p.170 / Chapter 4.11 --- HPV16 Long Control Region Sequence Variation --- p.174 / Chapter 4.11.1 --- Sequence variation of LCR --- p.174 / Chapter 4.11.2 --- Sequence variation and viral genome physical status --- p.175 / Chapter 4.11.3 --- Sequence variation in E2 binding sites --- p.176 / Chapter 4.11.4 --- Sequence variation of LCR in HPV16 cancer derived cell lines --- p.176 / Chapter 4.12 --- Summary of Study Part 4: --- p.183 / Chapter Hypothesis 4 --- p.185 / Chapter 4.13 --- Methylation Status of E2 Binding Sites --- p.187 / Chapter 4.13.1 --- Proportion methylation in E2 binding sites --- p.187 / Chapter 4.13.2 --- Methylation in invasive carcinomas according to the viral genome physical status --- p.191 / Chapter 4.14 --- Summary of Study Part 5: --- p.195 / Chapter Chapter 5 --- Discussion --- p.196 / Chapter 5.1 --- Viral Load --- p.197 / Chapter 5.2 --- Viral Integration --- p.200 / Chapter 5.2.1 --- HPV16 Viral Load and Physical Status --- p.201 / Chapter 5.2.2 --- HPV18 Viral Load and Physical Status --- p.204 / Chapter 5.2.3 --- HPV52 Viral Load and Physical Status --- p.207 / Chapter 5.2.4 --- HPV58 Viral Load and Physical Status --- p.210 / Chapter 5.2.5 --- Viral Load and Physical Status Summary --- p.214 / Chapter 5.3 --- HPV16 E6/E7 mRNA Transcript and Genome Physical Status --- p.215 / Chapter 5.4 --- HPV16 E2 Sequence Variation and Genome Physical Status --- p.218 / Chapter 5.5 --- HPV16 LCR Sequence Variation and Genome Physical Status --- p.222 / Chapter 5.6 --- Methylation of HPV16 E2 Binding Sites and Genome Physical Status --- p.225 / Chapter 5.7 --- Conclusions --- p.230 / Chapter 5.8 --- Implication of Current Findings and Future Work --- p.231 / References --- p.233
34

Lung cancer risk amongst uranium miners : the Radium Hill study / Arunthathi (Arul) Mylvaganam.

Mylvaganam, Arunthathi January 1993 (has links)
Includes bibliographical references. / 1 v. (various foliations) : ill. (some col) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Community Medicine, 1994
35

Characterization of activating transcription factor 5 in HCC carcinogenesis.

January 2007 (has links)
Gho Wai-Man. / Thesis submitted in: August 2006. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 114-123). / Abstracts in English and Chinese. / ABSTRACT --- p.I / 摘要 --- p.IV / ACKNOWLEDGEMENT --- p.VI / TABLE OF CONTENT --- p.VII / LIST OF TABLES --- p.XII / LIST OF FIGURES --- p.XIII / ABBREVIATIONS --- p.XVI / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Introduction --- p.2 / Chapter 1.2 --- Epidemiology --- p.2 / Chapter 1.3 --- Etiological factors --- p.6 / Chapter 1.3.1 --- Viral Hepatitis Infection --- p.6 / Chapter 1.3.1.1 --- Hepatitis B Virus (HBV) --- p.7 / Chapter 1.3.1.2 --- Hepatitis C Virus (HCV) --- p.9 / Chapter 1.3.2 --- Aflatoxin Exposure --- p.10 / Chapter 1.3.3 --- Alcohol Abuse --- p.11 / Chapter 1.3.4 --- Liver Cirrhosis --- p.12 / Chapter 1.4 --- Genetic alterations in hcc --- p.16 / Chapter 1.4.1 --- Chromosomal Gain --- p.16 / Chapter 1.4.2 --- Chromosomal Loss --- p.17 / Chapter 1.5 --- Discovery of common activating transcription factor 5 (atf5) down-regulations in hcc --- p.19 / Chapter 1.5.1 --- Chromosome 19 Aberration in HCC --- p.19 / Chapter 1.5.2 --- Discovery of High Frequency of ATF5 Down-regulations --- p.19 / Chapter 1.5.3 --- Activating Transcription Factor Family --- p.20 / Chapter 1.6 --- Aim of thesis --- p.28 / Chapter CHAPTER 2 --- MATERIALS AND METHODS --- p.29 / Chapter 2.1 --- Materials --- p.30 / Chapter 2.1.1 --- Chemicals --- p.30 / Chapter 2.1.2 --- Buffers --- p.31 / Chapter 2.1.3 --- Cell culture --- p.31 / Chapter 2.1.4 --- Nucleic acids --- p.32 / Chapter 2.1.5 --- Enzymes --- p.32 / Chapter 2.1.6 --- Equipment --- p.32 / Chapter 2.1.7 --- Kits --- p.33 / Chapter 2.1.8 --- Software and Web Resource --- p.33 / Chapter 2.2 --- Dna extraction --- p.34 / Chapter 2.2.1 --- Cell Lines --- p.34 / Chapter 2.2.2 --- Primary HCC --- p.34 / Chapter 2.2.3 --- Lymphocytic DNA --- p.35 / Chapter 2.3 --- Rna extraction --- p.36 / Chapter 2.4 --- Dna sequencing --- p.38 / Chapter 2.4.1 --- Polymerase Chain Reaction (PCR) --- p.38 / Chapter 2.4.2 --- Cycle Sequencing --- p.39 / Chapter 2.5 --- Dual-labeled fluirescence in situ hybridization (fish) --- p.41 / Chapter 2.5.1 --- FISH Probe Preparation --- p.41 / Chapter 2.5.1.1 --- Preparation of Human Bacterial Artificial Chromosome (BAC) --- p.41 / Chapter 2.5.1.2 --- Nick Translation --- p.41 / Chapter 2.5.2 --- FISH --- p.42 / Chapter 2.6 --- 5-aza-2'-deoxycytidine & trichostatin a treatment on cell lines --- p.43 / Chapter 2.7 --- Bisulfite modificaiton of dna --- p.43 / Chapter 2.8 --- Methylation-specific pcr (msp) --- p.44 / Chapter 2.9 --- Bisulfite dna sequencing --- p.44 / Chapter 2.10 --- Quantitative reverse transcription pcr (qrt-pcr) --- p.46 / Chapter 2.11 --- In-vitro and in-vivo functinal examination --- p.49 / Chapter 2.11.1 --- ATF5 Transfection --- p.49 / Chapter 2.11.2 --- Cell Growth Assay --- p.50 / Chapter 2.11.3 --- Xenograft Development --- p.51 / Chapter 2.12 --- codelink expression microarray --- p.51 / Chapter 2.13 --- Statistical analysis --- p.53 / Chapter CHAPTER 3 --- INACTIVATION OF MECHANISMS UNDERLYING ATF5 DOWN-REGULATION --- p.54 / Chapter 3.1 --- Introduction --- p.55 / Chapter 3.2 --- Materials and methods --- p.58 / Chapter 3.2.1 --- Cell Lines --- p.58 / Chapter 3.2.2 --- Mutational Analysis --- p.58 / Chapter 3.2.3 --- Copy Number Loss --- p.59 / Chapter 3.2.4 --- Epigenetic Control --- p.59 / Chapter 3.3 --- Results --- p.67 / Chapter 3.3.1 --- Sequencing Analysis of A TF5 Gene --- p.67 / Chapter 3.3.2 --- FISH Analysis of ATF5 Copy Number --- p.73 / Chapter 3.3.3 --- Epigenetic Control of A TF5 Expression --- p.73 / Chapter 3.4 --- Discussion --- p.82 / Chapter CHAPTER 4 --- FUNCTIONAL EXAMINATION AND INVESTIGATION OF DOWNSTREAM TARGETS MODULATED BY ATF5 --- p.85 / Chapter 4.1 --- Introduction --- p.86 / Chapter 4.2 --- Materials and methods --- p.88 / Chapter 4.2.1 --- Cell Lines --- p.88 / Chapter 4.2.2 --- Plasmids and Transfection --- p.88 / Chapter 4.2.3 --- Cell Growth Assay --- p.88 / Chapter 4.2.4 --- Xenograft Development --- p.88 / Chapter 4.2.5 --- CodeLink Expression Microarray --- p.89 / Chapter 4.2.6 --- Quantitative RT-PCR --- p.90 / Chapter 4.2.7 --- Statistical analysis --- p.90 / Chapter 4.3 --- Results --- p.91 / Chapter 4.3.1 --- Cell Proliferation --- p.91 / Chapter 4.3.1.1 --- In-Vitro Examination --- p.91 / Chapter 4.3.1.2 --- In-Vivo Examination --- p.91 / Chapter 4.3.2 --- Microarray A nalysis --- p.91 / Chapter 4.3.3 --- Correlation of A TF5 with Id-1 Expression --- p.103 / Chapter 4.4 --- Discussion --- p.106 / Chapter CHAPTER 5 --- PROPOSED FUTURE INVESTIGATIONS --- p.110 / Chapter 5.1 --- inactivation mechanisms of atf5 gene --- p.111 / Chapter 5.2 --- Molecular pathways modulated by atf5 --- p.112 / Chapter CHAPTER 6 --- REFERENCES --- p.114
36

Identification of peroxisome proliferator-activated receptor alpha (PPARα)-dependent genes involved in peroxisome proliferator-induced hepatocarcinogenesis.

January 2006 (has links)
Leung Wan-chi. / Thesis submitted in: November 2005. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 276-284). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract (Chinese Version) --- p.v / Acknowledgements --- p.viii / Tables of Contents --- p.ix / List of Abbreviations --- p.xxx / List of Figures --- p.xxxiii / List of Tables --- p.xlii / Chapter Chapter 1 --- Literature review --- p.1 / Chapter 1.1 --- Peroxisome proliferator activator receptors --- p.1 / Chapter 1.2 --- Peroxisome proliferators --- p.6 / Chapter 1.2.1 --- Hepatomegaly --- p.9 / Chapter 1.2.2 --- Peroxisome proliferation --- p.11 / Chapter 1.2.3 --- Target genes regulation --- p.12 / Chapter 1.2.4 --- Hypolipidemic effect --- p.16 / Chapter 1.2.5 --- Hepatocarcinogenesis --- p.18 / Chapter 1.3 --- Mode of actions --- p.20 / Chapter 1.3.1 --- Oxidative stress --- p.21 / Chapter 1.3.2 --- Inhibition of apoptosis --- p.22 / Chapter 1.3.2 --- Increase in cell replication --- p.22 / Chapter 1.3.4 --- Alterations in cell cycle control --- p.23 / Chapter 1.4 --- Objectives --- p.23 / Chapter Chapter 2 --- Materials and Methods --- p.25 / Chapter 2.1 --- Animal tail-genotyping --- p.25 / Chapter 2.1.1 --- Materials --- p.25 / Chapter 2.1.2 --- Methods --- p.28 / Chapter 2.2 --- Animal treatment --- p.29 / Chapter 2.2.1 --- Materials --- p.29 / Chapter 2.2.2 --- Methods --- p.29 / Chapter 2.3 --- Serum cholesterol and tryiglyceride analysis --- p.30 / Chapter 2.3.1 --- Materials --- p.31 / Chapter 2.3.2 --- Methods --- p.31 / Chapter 2.3.2.1 --- Serum preparation --- p.31 / Chapter 2.3.2.2 --- Serum cholesterol analysis --- p.31 / Chapter 2.3.2.3 --- Serum triglyceride analysis --- p.32 / Chapter 2.4 --- Histological analysis --- p.32 / Chapter 2.4.1 --- Materials --- p.32 / Chapter 2.4.2 --- Methods --- p.33 / Chapter 2.5 --- Total RNA isolation --- p.34 / Chapter 2.5.1 --- Materials --- p.34 / Chapter 2.5.2 --- Methods --- p.34 / Chapter 2.6 --- DNase I treatment of total liver RNA --- p.37 / Chapter 2.6.1 --- Materials --- p.37 / Chapter 2.6.2 --- Methods --- p.37 / Chapter 2.7 --- Reverse transcription (RT) of mRNA and non- fluorescent PCR (non-fluoroDD PCR) --- p.38 / Chapter 2.7.1 --- Materials --- p.43 / Chapter 2.7.2 --- Methods --- p.43 / Chapter 2.8 --- Reverse transcription (RT) of mRNA and fluorescent PCR (fluoroDD PCR) --- p.44 / Chapter 2.8.1 --- Materials --- p.44 / Chapter 2.8.2 --- Method --- p.44 / Chapter 2.9 --- Fluorescent differential display (fluoroDD) --- p.45 / Chapter 2.9.1 --- Materials --- p.45 / Chapter 2.9.2 --- Methods --- p.45 / Chapter 2.9.2.1 --- FluoroDD gel preparation --- p.45 / Chapter 2.9.2.2 --- Sample preparation and electrophoresis --- p.45 / Chapter 2.10 --- Excision of differentially expressed cDNA fragments --- p.46 / Chapter 2.10.1 --- Materials --- p.46 / Chapter 2.10.2 --- Methods --- p.46 / Chapter 2.11 --- Reamplification of differentally expressed cDNA fragments --- p.48 / Chapter 2.11.1 --- Materials --- p.48 / Chapter 2.11.2 --- Methods --- p.50 / Chapter 2.12 --- Subcloning of reamplified cDNA fragmens --- p.50 / Chapter 2.12.1 --- Materials --- p.53 / Chapter 2.12.2 --- Methods --- p.53 / Chapter 2.12.2.1 --- Ligation --- p.53 / Chapter 2.12.2.2 --- Transformation --- p.53 / Chapter 2.12.2.3 --- Phenol-choloroform extraction --- p.54 / Chapter 2.12.2.4 --- Confirmation of insert size by EcoRI digestion --- p.54 / Chapter 2.12.2.5 --- Mini-preparation of plasmid DNA from recombinant clones --- p.55 / Chapter 2.13 --- Sequencing of subcloned cDNA fragments --- p.55 / Chapter 2.13.1 --- Materials --- p.56 / Chapter 2.13.2 --- Methods --- p.56 / Chapter 2.13.2.1 --- Sequencing of fluoroDD cDNA fragments --- p.56 / Chapter 2.13.2.2 --- Blast search against computer database --- p.57 / Chapter 2.14 --- Northern blot analysis of sequenced cDNA fragments --- p.57 / Chapter 2.14.1 --- Materials --- p.58 / Chapter 2.14.2 --- Methods --- p.58 / Chapter 2.14.2.1 --- Formaldehyde agarose gel electrophoresis of total RNA --- p.58 / Chapter 2.14.2.2 --- Preparation of DIG-labeled RNA probes for hybridization --- p.59 / Chapter 2.14.2.3 --- Preparation of PCR DIG-labeled cDNA probes for hybridization --- p.60 / Chapter 2.14.2.4 --- Hybridization and colour development --- p.60 / Chapter Chapter 3 --- Results --- p.62 / Chapter 3.1 --- Confirmation of genotypes by PCR --- p.62 / Chapter 3.2 --- Body weight changes --- p.62 / Chapter 3.3 --- Organ weight changes --- p.67 / Chapter 3.4 --- Serum cholesterol and triglyceride levels --- p.70 / Chapter 3.5 --- Liver histology --- p.78 / Chapter 3.6 --- Reverse transcription (RT) of mRNA and non-fluorescent PCR (non-flurroDD PCR) --- p.114 / Chapter 3.7 --- Reverse transcription (RT) of mRNA and fluorescent PCR (fluoroDD PCR) --- p.125 / Chapter 3.8 --- Reamplification of fluorescent differential display (FDD) fragments --- p.138 / Chapter 3.9 --- Subcloning of reamplifled FDD fragments --- p.162 / Chapter 3.10 --- Sequencing of subcloned cDNA fragments --- p.176 / Chapter 3.11 --- Northern blot analysis of sequenced cDNA fragments --- p.195 / Chapter Chapter 4 --- Discussion --- p.250 / Chapter 4.1 --- Body weight changes --- p.250 / Chapter 4.2 --- Organ weight changes --- p.251 / Chapter 4.3 --- Serum cholesterol and triglyceride levels --- p.253 / Chapter 4.4 --- Liver histology --- p.254 / Chapter 4.5 --- "Functions and roles of identified PPARa-dependent and Wy-14,643- responsive genes" --- p.255 / Chapter 4.6 --- Mechanism of PP-induced hepatocarcinogeneis --- p.270 / Chapter Chapter 5 --- Conclusions --- p.274 / References --- p.276 / Appendix A Tables of preparation of reaction mix --- p.285 / Table A1. Preparation of animal tail genotyping PCR reaction --- p.285 / Table A2. Preparation of DNase I treatment --- p.285 / Table A3. Preparation of reverse transcription of non-fluoroDD and fluoroDD --- p.285 / Table A4. Preparation of non-fluoroDD and fluoroDD RT-PCR --- p.286 / Table A5. Preparation of reamplification of differentially expressed cDNA fragments --- p.286 / Table A6. Preparation of PCR reaction for DNA sequencing --- p.286 / Table A7. Preparation of PCR reaction for RNA probe --- p.287 / Table A8. Preparation of PCR reaction for cDNA probe --- p.287 / Appendix B DNA sequences and sequencing alignments of FluoroDD Fragments --- p.288 / Chapter B 1.1: --- DNA sequence of cDNA subclone AA1#2 (AP1 & ARP2) using M13 forward (-20) primer --- p.288 / Chapter B 1.2: --- "Sequencing alignment of cDNA subclone AA1#2 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.288 / Chapter B 1.3: --- Summary of sequence alignment of cDNA subclone AA1#2 with mouse Peci --- p.288 / Chapter B 2.1: --- DNA sequence of cDNA subclone AA1#3 (AP1 & ARP2) using M13 forward (-20) primer --- p.289 / Chapter B 2.2: --- "Sequencing alignment of cDNA subclone AA1#3 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.289 / Chapter B 2.3: --- Summary of sequence alignment of cDNA subclone AA1#3 with mouse Peci --- p.289 / Chapter B 3.1: --- DNA sequence of cDNA subclone AA1#4 (AP 1 & ARP2) using Ml3 reverse primer --- p.290 / Chapter B 3.2: --- "Sequencing alignment of cDNA subclone AA1#4 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.290 / Chapter B 3.3: --- Summary of sequence alignment of cDNA subclone AA1#4 with mouse Peci --- p.290 / Chapter B 4.1: --- DNA sequence of cDNA subclone AA1#20 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.291 / Chapter B 4.2: --- "Sequencing alignment of cDNA subclone AA1#20 with mouse peroxisomal delta 3, delta 2- enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.291 / Chapter B 4.3: --- Summary of sequence alignment of cDNA subclone AA1#20 with mouse Peci --- p.291 / Chapter B 5.1: --- DNA sequence of cDNA subclone AA4#1 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.292 / Chapter B 5.2: --- Sequencing alignment of cDNA subclone AA4#1 with mouse apolipoprotein A-V (Apoa5) by BLAST searching against the National Center for Biotechnology Information database --- p.292 / Chapter B 5.3: --- Summary of sequence alignment of cDNA subclone AA4#1 with mouse Apoa5 --- p.292 / Chapter B 6.1: --- DNA sequence of cDNA subclone AA4#9 (AP 1 & ARP2) using Ml3 reverse primer --- p.293 / Chapter B 6.2: --- Sequencing alignment of cDNA subclone AA4#9 with mouse apolipoprotein A-V (Apoa5) by BLAST searching against the National Center for Biotechnology Information database --- p.293 / Chapter B 6.3: --- Summary of sequence alignment of cDNA subclone AA4#9 with mouse Apoa5 --- p.293 / Chapter B 7.1: --- DNA sequence of cDNA subclone AA5#5 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.294 / Chapter B 7.2: --- Sequencing alignment of cDNA subclone AA5#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.294 / Chapter B 7.3: --- Summary of sequence alignment of cDNA subclone AA5#5 with mouse mitochondrion --- p.294 / Chapter B 8.1: --- DNA sequence of cDNA subclone AA6#1 (AP1 & ARP2) using Ml3 forward (-20) primer --- p.295 / Chapter B 8.2: --- Sequencing alignment of cDNA subclone AA6#1 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.295 / Chapter B 8.3: --- Summary of sequence alignment of cDNA subclone AA6#1 with mouse mitochondion --- p.295 / Chapter B 9.1: --- DNA sequence of cDNA subclone AA6#9 (AP 1 & ARP2) using Ml3 reverse primer --- p.296 / Chapter B 9.2: --- Sequencing alignment of cDNA subclone AA6#9 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.296 / Chapter B 9.3: --- Summary of sequence alignment of cDNA subclone AA6#9 with mouse mitochondrion --- p.296 / Chapter B 10.1: --- DNA sequence of cDNA subclone AA7#3 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.297 / Chapter B 10.2: --- Sequencing alignment of cDNA subclone AA7#3 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.297 / Chapter B 10.3: --- Summary of sequence alignment of cDNA subclone AA7#3 with mouse mitochondrion --- p.297 / Chapter B 11.1: --- DNA sequence of cDNA subclone AA7#5 (AP 1 & ARP2) using Ml3 reverse primer --- p.298 / Chapter B 11.2: --- Sequencing alignment of cDNA subclone AA7#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.298 / Chapter B 11.3: --- Summary of sequence alignment of cDNA subclone AA7#5 with mouse mitochondrion --- p.298 / Chapter B 12.1: --- DNA sequence of cDNA subclone AA10#1 (AP1 & ARP2) using M l3 forward (-20) primer --- p.299 / Chapter B 12.2: --- Sequencing alignment of cDNA subclone AA10#1 with mouse cysteine sulfinic acid decarboxylase (Csad) by BLAST searching against the National Center for Biotechnology Information database --- p.299 / Chapter B 12.3: --- Summary of sequence alignment of cDNA subclone AA10#1 with mouse Csad --- p.299 / Chapter B 13.1: --- DNA sequence of cDNA subclone AA10#1 (AP 1 & ARP2) using M13 reverse primer --- p.300 / Chapter B 13.2: --- Sequencing alignment of cDNA subclone AA10#1 with mouse cysteine sulfinic acid decarboxylase (Csad) by BLAST searching against the National Center for Biotechnology Information database --- p.300 / Chapter B 13.3: --- Summary of sequence alignment of cDNA subclone AA10#1 with mouse Csad --- p.300 / Chapter B 14.1: --- DNA sequence of cDNA subclone AA12#4 (AP1 & ARP2) using Ml3 forward (-20) primer --- p.301 / Chapter B 14.2: --- "Sequencing alignment of cDNA subclone AA12#4 with mouse acetyl-coenzyme A dehydrogenase, medium chain (MCAD) by BLAST searching against the National Center for Biotechnology Information database" --- p.301 / Chapter B 14.3: --- Summary of sequence alignment of cDNA subclone AA12#4 with mouse MCAD --- p.301 / Chapter B 15.1: --- DNA sequence of cDNA subclone AA12#4 (AP 1 & ARP2) using Ml3 reverse primer --- p.302 / Chapter B 15.2: --- "Sequencing alignment of cDNA subclone AA12#4 with mouse acetyl-coenzyme A dehydrogenase, medium chain (MCAD) by BLAST searching against the National Center for Biotechnology Information database" --- p.302 / Chapter B 15.3: --- Summary of sequence alignment of cDNA subclone AA12#4 with mouse MCAD --- p.302 / Chapter B 16.1: --- DNA sequence of cDNA subclone AB7#2 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.303 / Chapter B 16.2: --- "Sequencing alignment of cDNA subclone AB7#2 with mouse UDP-glucuronosyltransferase 2 family, member 5 (UGT2b5) by BLAST searching against the National Center for Biotechnology Information database" --- p.303 / Chapter B 16.3: --- Summary of sequence alignment of cDNA subclone AB7#2 with mouse UGT2b5 --- p.303 / Chapter B 17.1: --- DNA sequence of cDNA subclone AB7#8 (AP3 & ARP3) using M13 reverse primer --- p.304 / Chapter B 17.2: --- "Sequencing alignment of cDNA subclone AB7#8 with mouse UDP-glucuronosyltransferase 2 family, member 5 (UGT2b5) by BLAST searching against the National Center for Biotechnology Information database" --- p.304 / Chapter B 17.3: --- Summary of sequence alignment of cDNA subclone AB7#8 with mouse UGT2b5 --- p.304 / Chapter B 18.1: --- DNA sequence of cDNA subclone AB17#16 (AP3 & ARP3) using M13 reverse primer --- p.305 / Chapter B 18.2: --- Sequencing alignment of cDNA subclone AB17#16 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.305 / Chapter B 18.3: --- Summary of sequence alignment of cDNA subclone AB17#16 with mouse mitochondrion --- p.305 / Chapter B 19.1: --- DNA sequence of cDNA subclone AB18#4 (AP3 & ARP3) using M13 forward (-20) primer --- p.306 / Chapter B 19.2: --- Sequencing alignment of cDNA subclone AB18#4 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.306 / Chapter B 20.1: --- DNA sequence of cDNA subclone AB18#4 (AP3 & ARP3) using M13 reverse primer --- p.307 / Chapter B 20.2: --- Sequencing alignment of cDNA subclone AB18#4 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.307 / Chapter B 20.3: --- Summary of sequence alignment of cDNA subclone AB 18#4 with mouse mitochondrion --- p.307 / Chapter B 21.1: --- DNA sequence of cDNA subclone AB19#2 (AP3 & ARP3) using M13 forward (-20) primer --- p.308 / Chapter B 21.2: --- Sequencing alignment of cDNA subclone AB 19#2 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.308 / Chapter B 21.3: --- Summary of sequence alignment of cDNA subclone AB19#2 with mouse mitochondrion --- p.308 / Chapter B 22.1: --- DNA sequence of cDNA subclone AB19#10 (AP3 & ARP3) using Ml3 reverse primer --- p.309 / Chapter B 22.2: --- Sequencing alignment of cDNA subclone AB 19#10 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.309 / Chapter B 22.3: --- Summary of sequence alignment of cDNA subclone AB19#10 with mouse mitochondrion --- p.309 / Chapter B 23.1: --- DNA sequence ofcDNA subclone AB22#9 (AP3 & ARP3) using M13 forward (-20) primer --- p.310 / Chapter B 23.2: --- Sequencing alignment of cDNA subclone AB22#9 with mouse peroxisome biogenesis factor 16 (Pexl6) by BLAST searching against the National Center for Biotechnology Information database --- p.310 / Chapter B 23.3: --- Summary of sequence alignment of cDNA subclone AB22#9 with mouse Pexl6 --- p.310 / Chapter B 24.1: --- DNA sequence of cDNA subclone AB22#9 (AP3 & ARP3) using Ml3 reverse primer --- p.311 / Chapter B 24.2: --- Sequencing alignment of cDNA subclone AB22#9 with mouse peroxisome biogenesis factor 16 (Pexl6) by BLAST searching against the National Center for Biotechnology Information database --- p.311 / Chapter B 24.3: --- Summary of sequence alignment of cDNA subclone AB22#9 with mouse Pexl6 --- p.311 / Chapter B 25.1: --- DNA sequence ofcDNA subclone AB24#9 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.312 / Chapter B 25.2: --- Sequencing alignment of cDNA subclone AB24#9 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.312 / Chapter B 25.3: --- Summary of sequence alignment of cDNA subclone AB24#9 with mouse Cyp4al4 --- p.312 / Chapter B 26.1: --- DNA sequence of cDNA subclone AB24#9 (AP3 & ARP3) using M13 reverse primer --- p.313 / Chapter B 26.2: --- Sequencing alignment of cDNA subclone AB24#9 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.313 / Chapter B 26.3: --- Summary of sequence alignment of cDNA subclone AB24#9 with mouse Cyp4al4 --- p.313 / Chapter B 27.1: --- DNA sequence of cDNA subclone AB25#6 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.314 / Chapter B 27.2: --- Sequencing alignment of cDNA subclone AB25#6 with mouse Cyp4a l4 by BLAST searching against the National Center for Biotechnology Information database --- p.314 / Chapter B 27.3: --- Summary of sequence alignment of cDNA subclone AB25#6 with mouse Cyp4al4 --- p.314 / Chapter B 28.1: --- DNA sequence of cDNA subclone AB26#17 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.315 / Chapter B 28.2: --- Sequencing alignment of cDNA subclone AB26#17 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.315 / Chapter B 28.3: --- Summary of sequence alignment of cDNA subclone AB26#17 with mouse Cyp4al4 --- p.315 / Chapter B 29.1: --- DNA sequence of cDNA subclone AB26#3Q (AP3 & ARP3) using M13 reverse primer --- p.316 / Chapter B 29.2: --- Sequencing alignment of cDNA subclone AB26#30 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.316 / Chapter B 29.3: --- Summary of sequence alignment of cDNA subclone AB26#30 with mouse Cyp4al4 --- p.316 / Chapter B 30.1: --- DNA sequence of cDNA subclone AB29#7 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.317 / Chapter B 30.2: --- Sequencing alignment of cDNA subclone AB29#7 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.317 / Chapter B 30.3: --- Summary of sequence alignment of cDNA subclone AB29#7 with mouse catalase --- p.317 / Chapter B 31.1: --- DNA sequence of cDNA subclone AC1#1 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.318 / Chapter B 31.2: --- Sequencing alignment of cDNA subclone AC1#1 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.318 / Chapter B 31.3: --- Summary of sequence alignment of cDNA subclone AC1#1 with mouse SPI --- p.318 / Chapter B 32.1: --- DNA sequence of cDNA subclone AC1#1 (AP2 & ARP 19) using Ml3 reverse primer --- p.319 / Chapter B 32.2: --- Sequencing alignment of cDNA subclone AC 1# 1 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.319 / Chapter B 32.3: --- Summary of sequence alignment of cDNA subclone AC1#1 with mouse SPI --- p.319 / Chapter B 33.1: --- DNA sequence of cDNA subclone AC1#2 (AP2& ARP 19) using M13 forward (-20) primer --- p.320 / Chapter B 33.2: --- Sequencing alignment of cDNA subclone AC 1#2 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.320 / Chapter B 33.3: --- Summary of sequence alignment of cDNA subclone AC1#2 with mouse SPI --- p.320 / Chapter B 34.1: --- DNA sequence of cDNA subclone AC1#2 (AP2& ARP 19) using M13 reverse primer --- p.321 / Chapter B 34.2: --- Sequencing alignment of cDNA subclone AC1#2 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.321 / Chapter B 34.3: --- Summary of sequence alignment of cDNA subclone AC1#2 with mouse SPI --- p.321 / Chapter B 35.1: --- DNA sequence ofcDNA subclone AC2#2 (AP2 & ARP19) using Ml3 reverse primer --- p.322 / Chapter B 35.2: --- Sequencing alignment of cDNA subclone AC2#2 with mouse bifunctional enzyme (PBFE) by BLAST searching against the National Center for Biotechnology Information database --- p.322 / Chapter B 35.3: --- Summary of sequence alignment of cDNA subclone AC2#2 with mouse PBFE --- p.322 / Chapter B 36.1: --- DNA sequence of cDNA subclone AC2#5 (AP2 & ARP19) using Ml3 reverse primer --- p.323 / Chapter B 36.2: --- Sequencing alignment of cDNA subclone AC2#5 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.323 / Chapter B 36.3: --- Summary of sequence alignment of cDNA subclone AC2#5 with mouse catalase --- p.323 / Chapter B 37.1: --- DNA sequence of cDNA subclone AC2#6 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.324 / Chapter B 37.2: --- Sequencing alignment of cDNA subclone AC2#6 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.324 / Chapter B 37.3: --- Summary of sequence alignment of cDNA subclone AC2#6 with mouse SPI --- p.324 / Chapter B 38.1: --- DNA sequence ofcDNA subclone AC4#3 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.325 / Chapter B 38.2: --- Sequencing alignment of cDNA subclone AC4#3 with mouse Cyp2a5 by BLAST searching against the National Center for Biotechnology Information database --- p.325 / Chapter B 38.3: --- Summary of sequence alignment of cDNA subclone AC4#3 with mouse Cyp2a5 --- p.325 / Chapter B 39.1: --- DNA sequence ofcDNA subclone AC4#3 (AP2 & ARP 19) using M13 reverse primer --- p.326 / Chapter B 39.2: --- Sequencing alignment of cDNA subclone AC4#3 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.326 / Chapter B 39.3: --- Summary of sequence alignment of cDNA subclone AC4#3 with mouse SPI --- p.326 / Chapter B 40.1: --- DNA sequence of cDNA subclone AC7#5 (AP2& ARP 19) using M13 forward (-20) primer --- p.327 / Chapter B 40.2: --- Sequencing alignment of cDNA subclone AC7#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.327 / Chapter B 40.3: --- Summary of sequence alignment of cDNA subclone AC7#5 with mouse SPI --- p.327 / Chapter B 41.1: --- DNA sequence of cDNA subclone AD6#4 (AP2 & ARP 18) using Ml3 reverse primer --- p.328 / Chapter B 41.2: --- Sequencing alignment of cDNA subclone AD6#4 with mouse N-terminal Asn amidase (Ntanl) by BLAST searching against the National Center for Biotechnology Information database --- p.328 / Chapter B 41.3: --- Summary of sequence alignment of cDNA subclone AD6#4 with mouse Ntanl --- p.328 / Chapter B 42.1: --- DNA sequence of cDNA subclone AD6#10 (AP2 & ARP 18) using Ml3 forward (-20) primer --- p.329 / Chapter B 42.2: --- Sequencing alignment of cDNA subclone AD6#10 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.329 / Chapter B 42.3: --- Summary of sequence alignment of cDNA subclone AD6#10 with mouse Cvp4al0 --- p.329 / Chapter B 43.1: --- DNA sequence of cDNA subclone AD6#10 (AP2 & ARP18) using M13 reverse primer --- p.330 / Chapter B 43.2: --- Sequencing alignment of cDNA subclone AD6#10 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.330 / Chapter B 43.3: --- Summary of sequence alignment of cDNA subclone AD6#10 with mouse Cyp4al0 --- p.330 / Chapter B 44.1: --- DNA sequence of cDNA subclone AD8#2 (AP2 & ARP 18) using M13 forward (-20) primer --- p.331 / Chapter B 44.2: --- Sequencing alignment of cDNA subclone AD8#2with mouse Cyp4a l0 by BLAST searching against the National Center for Biotechnology Information database --- p.331 / Chapter B 44.3: --- Summary of sequence alignment of cDNA subclone AD8#2 with mouse Cvp4a10 --- p.331 / Chapter B 45.1: --- DNA sequence ofcDNA subclone AD8#7 (AP2 & ARP18) using Ml3 reverse primer --- p.332 / Chapter B 45.2: --- Sequencing alignment of cDNA subclone AD8#7 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.332 / Chapter B 45.3: --- Summary of sequence alignment of cDNA subclone AD8#7 with mouse Cyp4a10 --- p.332 / Chapter B 46.1: --- DNA sequence of cDNA subclone AD9#2 (AP2 & ARP 18) using Ml3 forward (-20) primer --- p.333 / Chapter B 46.2: --- Sequencing alignment of cDNA subclone AD9#2 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.333 / Chapter B 46.3: --- Summary of sequence alignment of cDNA subclone AD9#2 with mouse Cyp4al0 --- p.333 / Chapter B 47.1: --- DNA sequence of cDNA subclone AD9#3 (AP2 & ARP 18) using M13 reverse primer --- p.334 / Chapter B 47.2: --- Sequencing alignment of cDNA subclone AD9#3 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.334 / Chapter B 47.3: --- Summary of sequence alignment of cDNA subclone AD9#3 with mouse Cvp4a10 --- p.334 / Chapter B 48.1: --- DNA sequence ofcDNA subclone AF1#8 (AP10 & ARP13) using M13 forward (-20) primer --- p.335 / Chapter B 48.2: --- Sequencing alignment of cDNA subclone AF1#8 with mouse very-long-chain acyl-coA synthetase (VLACS) by BLAST searching against the National Center for Biotechnology Information database --- p.335 / Chapter B 48.3: --- Summary of sequence alignment of cDNA subclone AF1#8 with mouse VLACS --- p.335 / Chapter B 49.1: --- DNA sequence of cDNA subclone AF1#8 (AP 10 & ARP 13) using Ml3 reverse primer --- p.336 / Chapter B 49.2: --- Sequencing alignment of cDNA subclone AF1#8 with mouse very-long-chain acyl-coA synthetase (VLACS) by BLAST searching against the National Center for Biotechnology Information database --- p.336 / Chapter B 49.3: --- Summary of sequence alignment of cDNA subclone AF1#8 with mouse VLACS --- p.336 / Chapter B 50.1: --- DNA sequence of cDNA subclone AF21#5 (AP 10 & ARP 13) using M13 reverse primer --- p.337 / Chapter B 50.2: --- "Sequencing alignment ofcDNA subclone AF21#5 with mouse cell death-inducing DNA fragmentation factor, alpha subunit-like effector B (Cideb) by BLAST searching against the National Center for Biotechnology Information database" --- p.337 / Chapter B 50.3: --- Summary of sequence alignment of cDNA subclone AF21#5 with mouse Cideb --- p.337 / Chapter B 51.1: --- DNA sequence ofcDNA subclone AF25#6 (AP10 & ARP13) using M13 forward (-20) primer --- p.338 / Chapter B 51.2: --- Sequencing alignment of cDNA subclone AF25#6 with mouse major urinary protein 2 (MUPII) by BLAST searching against the National Center for Biotechnology Information database --- p.338 / Chapter B 51.3: --- Summary of sequence alignment of cDNA subclone AF25#6 with mouse MUP II --- p.338 / Chapter B 52.1: --- DNA sequence of cDNA subclone AF25#7 (AP 10 & ARP 13) using Ml3 reverse primer --- p.339 / Chapter B 52.2: --- Sequencing alignment of cDNA subclone AF25#7 with mouse major urinary protein 2 (MUP II) by BLAST searching against the National Center for Biotechnology Information database --- p.339 / Chapter B 52.3: --- Summary of sequence alignment of cDNA subclone AF25#7 with mouse MUPII --- p.339 / Chapter B 53.1: --- DNA sequence ofcDNA subclone AF30#4 (AP10 & ARP13) using M13 forward (-20) primer --- p.340 / Chapter B 53.2: --- Sequencing alignment of cDNA subclone AF30#4 with mouse mRNA for suppressor of actin mutations (SAC1 gene) by BLAST searching against the National Center for Biotechnology Information database --- p.340 / Chapter B 53.3: --- Summary of sequence alignment of cDNA subclone AF3Q#4 with mouse SAC1 --- p.340 / Chapter B 54.1: --- DNA sequence of cDNA subclone AF30#5 (AP 10 & ARP 13) using Ml3 reverse primer --- p.341 / Chapter B 54.2: --- Sequencing alignment of cDNA subclone AF30#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.341 / Chapter B 54.3: --- Summary of sequence alignment of cDNA subclone AF30#5 with mouse mitochondrion --- p.341 / Chapter B 55.1: --- DNA sequence ofcDNA subclone AH1#6 (AP11 & ARP19) using M13 forward (-20) primer --- p.342 / Chapter B 55.2: --- Sequencing alignment of cDNA subclone AH1#6 with mouse EST by BLAST searching against the National Center for Biotechnology Information database --- p.342 / Chapter B 55.3: --- Summary of sequence alignment of cDNA subclone AH1#6 with mouse EST --- p.342 / Chapter B 56.1: --- DNA sequence of cDNA subclone AIl#5 (AP6 & ARP4) using Ml3 forward (-20) primer --- p.343 / Chapter B 56.2: --- Sequencing alignment of cDNA subclone AIl#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.343 / Chapter B 56.3: --- Summary of sequence alignment of cDNA subclone All#5 with mouse SPI --- p.343 / Chapter B 57.1: --- DNA sequence of cDNA subclone AI1#5 (AP6 & ARP4) using Ml3 reverse primer --- p.344 / Chapter B 57.2: --- Sequencing alignment of cDNA subclone AIl#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST --- p.344 / Chapter B 57.3: --- Summary of sequence alignment of cDNA subclone AIl #5 with mouse SPI --- p.344 / Chapter B 58.1: --- DNA sequence of cDNA subclone AI18#6 (AP6 & ARP4) using Ml3 forward (-20) primer --- p.345 / Chapter B 58.2: --- Sequencing alignment of cDNA subclone AI18#6 with mouse argininosuccinate lyase (Asl) by BLAST searching against the National Center for Biotechnology Information database --- p.345 / Chapter B 58.3: --- Summary of sequence alignment of cDNA subclone AI18#6 with mouse Asl --- p.345 / Chapter B 59.1: --- DNA sequence of cDNA subclone AI18#6 (AP6 & ARP4) using M13 reverse primer --- p.346 / Chapter B 59.2: --- Sequencing alignment of cDNA subclone AI18#6 with mouse argininosuccinate lyase (Asl) by BLAST searching against the National Center for Biotechnology Information database --- p.346 / Chapter B 59.3: --- Summary of sequence alignment of cDNA subclone AI18#6 with mouse Asl --- p.346 / Chapter B 60.1: --- DNA sequence ofcDNA subclone AJ1#4 (AP6 & ARP14) using Ml3 forward (-20) primer --- p.347 / Chapter B 60.2: --- Sequencing alignment of cDNA subclone AJ1#4 with mouse carboxylesterase by BLAST searching against the National Center for Biotechnology Information database --- p.347 / Chapter B 60.3: --- Summary of sequence alignment of cDNA subclone AJ1#4 with mouse carboxylesterase --- p.347 / Chapter B 61.1: --- DNA sequence ofcDNA subclone AJ1#5 (AP6 & ARP14) using Ml3 reverse primer --- p.348 / Chapter B 61.2: --- Sequencing alignment of cDNA subclone AJ1#5 with mouse carboxylesterase by BLAST searching against the National Center for Biotechnology Information database --- p.348 / Chapter B 61.3: --- Summary of sequence alignment of cDNA subclone AJ1#5 with mouse carboxylesterase --- p.348 / Chapter B 62.1: --- DNA sequence ofcDNA subclone AJ2#10 (AP6 & ARP14) using M13 forward (-20) primer --- p.349 / Chapter B 62.2: --- Sequencing alignment of cDNA subclone AJ2#10 with peroxisomal acyl-coA oxidase (AOX) by BLAST searching against the National Center for Biotechnology Information database --- p.349 / Chapter B 62.3: --- Summary of sequence alignment of cDNA subclone AJ2#10 with mouse AOX --- p.349 / Chapter B 63.1: --- DNA sequence ofcDNA subclone AJ2#10 (AP6 & ARP14) using Ml3 reverse primer --- p.350 / Chapter B 63.2: --- Sequencing alignment of cDNA subclone AJ2#10 with peroxisomal acyl-coA oxidase (AOX) by BLAST searching against the National Center for Biotechnology Information database --- p.350 / Chapter B 63.3: --- Summary of sequence alignment of cDNA subclone AJ2#10 with mouse AOX --- p.350 / Chapter B 64.1: --- DNA sequence ofcDNA subclone AJ9#1 (AP6 & ARP 14) using Ml3 forward (-20) primer --- p.351 / Chapter B 64.2: --- Sequencing alignment of cDNA subclone AJ9#1 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.351 / Chapter B 64.3: --- Summary of sequence alignment of cDNA subclone AJ9#1 with mouse catalase --- p.351 / Chapter B 65.1: --- DNA sequence ofcDNA subclone AJ9#1 (AP6 & ARP14) using Ml3 reverse primer --- p.352 / Chapter B 65.2: --- Sequencing alignment of cDNA subclone AJ9#1 with mouse suppressor of actin mutations (SAC1 gene) by BLAST searching against the National Center for Biotechnology Information database --- p.352 / Chapter B 65.3: --- Summary of sequence alignment of cDNA subclone AJ9#1 with mouse SAC1 --- p.352 / Chapter B 66.1: --- DNA sequence ofcDNA subclone AL2#8 (AP7 & ARP15) using M13 forward (-20) primer --- p.353 / Chapter B 66.2: --- Sequencing alignment of cDNA subclone AL2#8 with mouse hydroxy steroid (17-beta) dehydrogenase 11 (Hsdl7pil) by BLAST searching against the National Center for Biotechnology Information database --- p.353 / Chapter B 66.3: --- Summary of sequence alignment of cDNA subclone AL2#8 with mouse HSD17β11 --- p.353 / Chapter B 67.1: --- DNA sequence of cDNA subclone AL3#3 (AP7& ARP 15) using Ml3 forward (-20) primer --- p.354 / Chapter B 67.2: --- Sequencing alignment of cDNA subclone AL3#3 with mouse hydroxy steroid (17-beta) dehydrogenase 11 (Hsdl7pll) by BLAST searching against the National Center for Biotechnology Information database --- p.354 / Chapter B 67.3: --- Summary of sequence alignment of cDNA subclone AL3#3 with mouse HSD17β11 --- p.354 / Chapter B 68.1: --- DNA sequence of cDNA subclone AL3#3 (AP7& ARP 15) using M13 reverse primer --- p.355 / Chapter B 68.2: --- Sequencing alignment of cDNA subclone AL3#3 with mouse hydroxysteroid (17-beta) dehydrogenase 11 (Hsdl7β1l) by BLAST searching against the National Center for Biotechnology Information database --- p.355 / Chapter B 68.3: --- Summary of sequence alignment of cDNA subclone AL3#3 with mouse HSD17β11 --- p.355 / Chapter B 69.1: --- DNA sequence of cDNA subclone AO1#2 (AP5 & ARP 10) 356 using Ml3 forward (-20) primer --- p.356 / Chapter B 69.2: --- Sequencing alignment of cDNA subclone AO1#2 with mouse 356 adipose differentiation related protein (ADFP) by BLAST searching against the National Center for Biotechnology Information database --- p.356 / Chapter B 69.3: --- Summary of sequence alignment of cDNA subclone AO1 #2 with 356 mouse ADFP --- p.356 / Chapter B 70.1: --- DNA sequence ofcDNA subclone AO1#5 (AP5 & ARP10) 357 using M13 reverse primer --- p.357 / Chapter B 70.2: --- Sequencing alignment of cDNA subclone AO1#5 with mouse 357 carnitine O-octanoyltransferase (Crot) by BLAST searching against the National Center for Biotechnology Information database --- p.357 / Chapter B 70.3: --- Summary of sequence alignment of cDNA subclone AO1 #5 with 357 mouse Crot --- p.357 / Chapter B 71.1: --- DNA sequence ofcDNA subclone AO2#6 (AP5 & ARP10) 358 using Ml3 forward (-20) primer --- p.358 / Chapter B 71.2: --- Sequencing alignment of cDNA subclone A02#6 with mouse 358 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.358 / Chapter B 71.3: --- Summary of sequence alignment of cDNA subclone AO2#6 358 with mouse Rnase4 --- p.358 / Chapter B 72.1: --- DNA sequence of cDNA subclone AO2#6 (AP5 & ARP 10) 359 using Ml3 reverse primer --- p.359 / Chapter B 72.2: --- Sequencing alignment of cDNA subclone A02#6 with mouse 359 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.359 / Chapter B 72.3: --- Summary of sequence alignment of cDNA subclone A02#6 359 with mouse Rnase4 --- p.359 / Chapter B 73.1: --- DNA sequence ofcDNA subclone AO2#8 (AP5 & ARP10) 360 using Ml3 reverse primer --- p.360 / Chapter B 73.2: --- Sequencing alignment of cDNA subclone A02#8 with mouse 360 carnitine O-octanoyltransferase (Crot) by BLAST searching against the National Center for Biotechnology Information database --- p.360 / Chapter B 73.3: --- Summary of sequence alignment of cDNA subclone AO2#8 with 360 mouse Crot --- p.360 / Chapter B 74.1: --- DNA sequence ofcDNA subclone AO8#2 (AP5 & ARP10) 361 using M13 forward (-20) primer --- p.361 / Chapter B 74.2: --- Sequencing alignment of cDNA subclone A08#2 with mouse 361 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.361 / Chapter B 74.3: --- Summary of sequence alignment of cDNA subclone AO8#2 with 361 mouse Rnase4 --- p.361 / Chapter B 75.1: --- DNA sequence of cDNA subclone AP4#4 (AP12 & ARP2) 362 using Ml3 forward (-20) primer --- p.362 / Chapter B 75.2: --- Sequencing alignment of cDNA subclone AP4#4 with mouse 362 mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.362 / Chapter B 75.3: --- Summary of sequence alignment of cDNA subclone AP4#4 with 362 mouse mitochondrion --- p.362 / Chapter B 76.1: --- DNA sequence ofcDNA subclone AP4#4 (AP12 & ARP2) 363 using Ml3 reverse primer --- p.363 / Chapter B 76.2: --- Sequencing alignment of cDNA subclone AP4#4 with mouse 363 mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.363 / Chapter B 76.3: --- Summary of sequence alignment of cDNA subclone AP4#4 with 363 mouse mitochondrion --- p.363
37

Relationship between hepatitis B virus X protein and hypoxia-inducible factors and the therapeutic targets of sorafenib. / CUHK electronic theses & dissertations collection

January 2012 (has links)
慢性乙型肝炎病毒(HBV)感染是肝癌發生的重要因素,其中乙肝病毒X蛋白(HBx)在這一過程起著關鍵作用。研究發現,一些HBV變體和HBx突變具有更高致癌風險,而且這些變體和突變存在地區差異。香港是HBV感染高發地帶,因此本研究目的是從這一地區120個肝癌組織標本中篩查出HBx突變位點。我們用巢式PCR從84.16% (101/120)的標本中提取和擴增了HBx,並進行基因測序。三種HBx突變被檢測出,包括點突變,遠端羧基端截斷和缺失突變。其中點突變位點有39個,特別的是在50%的標本中檢測出A1630G/G1721A 和 A1762T/G1764A雙突變。在31.68% (32/101)的標本中發現遠端羧基端截斷,以及在2.97% (3/101)的標本中檢測出缺失突變。總之,大多數突變集中在HBx轉錄啟動域,表明這些突變在肝癌發生中可能起著重要作用。 / 缺氧誘導因數-1α(HIF-1α)在肝癌的發生和發展中也起著重要作用。研究發現,野生型HBx可以啟動HIF-1α,但是變異型HBx和HIF-1α的關係還沒有研究清楚。我們研究表明HBx轉錄啟動域是必需而且足夠啟動HIF-1α的。在這個區域的突變中,雙突變K130M/V131Z增強HBx對HIF-1α的活性,但遠端羧基端截斷和缺失突變削弱其功能。進一步研究發現,羧基端特別是119-140氨基酸對HBx的穩定和功能非常重要。肝癌標本中,我們也發現HBx和HIF-1α的表達呈正相關。因此,雖然不同的突變對於HBx的功能有不同的影響,但總的來說這些突變可以促進HIF-1α的表達和啟動,進而導致肝癌患者的預後不良。 / 靶向治療在肝癌綜合治療中扮演重要角色。索拉菲尼(Sorafenib)是一種多激酶抑制劑,臨床實驗發現它對晚期肝癌治療有效,但其抑制腫瘤血管生成機制還不完全清楚。我們研究發現Sorafenib明顯而且劑量依賴性地降低HIF-1α的表達和活化,進而抑制血管內皮生長因數(VEGF)的表達。Sorafenib抑制mTOR, ERK, p70S6K, RP-S6, eIF4E和4E-BP1等翻譯起始因數的磷酸化,從而抑制HIF-1α的合成而不影響其降解。體外實驗進一步發現Sorafenib降低HIF-1α和VEGF的表達,從而抑制腫瘤的血管形成和生長。總之,我們的研究表明sorafenib可能通過阻斷mTOR/p70S6K/4E-BP1 和 ERK 信號通路來抑制HIF-1α的合成,從而發揮其抗腫瘤血管生成作用。 / Chronic HBV infection is the leading cause of hepatocellular carcinoma (HCC) and HBx plays a crucial role in the molecular pathogenesis of HBV-related HCC. Previous investigations have indicated that some variations of HBV or mutations of HBx are associated with higher risk of HCC development, whereas the mutations profiles may be disparate in different regions. In the present studies, we thus aim to screen and identify the HBx mutation hotspots in 120 HCC tissues from Hong Kong, a region with HBV hyper-endemic. HBV DNAs were successfully isolated and amplified in 84.16% (101/120) HCC specimens via nest-PCR, and then subjected to gene sequencing. Three types of HBx mutations, including point mutations, distal carboxyl-terminal truncations and deletion mutations, were discovered. Among the point mutations, 39 mutation hotspots were indentified, with two double mutations (A1630G/G1721A and A1762T/G1764A) occurring in approximate 50% of 101 HCC cases. Distal C-terminal truncated mutations were discovered in 31.68% (32/101) of HCC cases, whereas deletion mutations were detected in 2.97% (3/101) of them. Overall, majority of identified mutations were located at the transactivation domain of HBx, suggesting the crucial roles of these mutations in HCC development. / Hypoxia-inducible factor-1α (HIF-1α) also closely involves in the development and progression of HCC. Wild-type HBx has been shown to activate HIF-1α. But the relationship between HBx mutants and activation of HIF-1α has not been fully elucidated. We here revealed that the transactivaiton domain of HBx was necessary and sufficient to activate HIF-1α. Double mutations K130M/V131Z in this domain enhanced the functionality of HBx in upregulating the expression and the activation of HIF-1α, whereas C-terminal truncations and deletion mutations weakened this prosperity of HBx. We further uncovered that the C-terminus, especially the region of amino acids 119-140, was essential for the stability and transactivation of HBx. The positive association between the HBx mutants and HIF-1α was found in the HCC tissue samples. Therefore, although mutations exerted different effects on the functionality of HBx, the overall activity of HBx mutants was suggested to upregulate HIF-1α, whose level is related to poor prognosis of HCC patients. / The therapy targeting a critical molecule in the development of HCC such as HIF-1α may be a potential and effective treatment regimen for HCC patients. Sorafenib, a multikinase inhibitor, has demonstrated promising results for the treatment of advanced HCC in clinical trials, but the mechanism that accounts for the anti-angiogenic efficiency of this agent has not been fully elucidated. We here revealed that sorafenib remarkably and dose-dependently decreased the expression and the transcriptional activity of HIF-1α, and its target gene, vascular endothelial grow factor (VEGF). Further analysis revealed that this reduction of HIF-1α by sorafenib was caused by the inhibition of HIF-1α protein synthesis rather than by the promotion of HIF-1α protein degradation. Moreover, the phosphorylated levels of mTOR, ERK, p70S6K, RP-S6, eIF4E and 4E-BP1 were significantly suppressed by sorafenib. In vivo studies further confirmed the inhibitory effect of sorafenib on the expression of HIF-1α and VEGF proteins, leading to a decrease of tumor vascularisation and growth. Collectively, our data suggest that sorafenib may exhibit anti-angiogenic activity by inhibiting HIF-1α synthesis, which is likely to be achieved through suppressing the phosphorylation of mTOR/p70S6K/4E-BP1 and ERK. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Liu, Liping. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 133-154). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.I / 摘要 --- p.IV / Publications --- p.VI / Acknowledgements --- p.VII / Abbreviations --- p.IX / List of Figures --- p.XI / List of Tables --- p.XIII / Table of Contents --- p.XIV / Chapter Chapter I --- General Introduction --- p.1 / Chapter 1.1 --- Overview of Hepatocellular Carcinoma --- p.1 / Chapter 1.2 --- HBV Infection and HCC Development --- p.6 / Chapter 1.3 --- Overview on Hepatitis B virus X Protein --- p.10 / Chapter 1.4 --- Roles of Hypoxia-inducible Factors in HCC --- p.17 / Chapter 1.5 --- Targeted Therapies and Sorafenib --- p.27 / Chapter Chapter II --- Identification of HBx Mutation Hotspots in HCC Tissues --- p.31 / Chapter 2.1 --- Abstract --- p.31 / Chapter 2.2 --- Introduction --- p.32 / Chapter 2.3 --- Materials and Methods --- p.35 / Chapter 2.4 --- Results --- p.40 / Chapter 2.5 --- Discussion --- p.53 / Chapter Chapter III --- The Relationship between HBx Mutants and HIF-1α --- p.59 / Chapter 3.1 --- Abstract --- p.59 / Chapter 3.2 --- Introduction --- p.60 / Chapter 3.3 --- Materials and Methods --- p.63 / Chapter 3.4 --- Results --- p.70 / Chapter 3.5 --- Discussion --- p.91 / Chapter Chapter IV --- The Effects of Sorafenib on Hypoxia-inducible Factor-1α --- p.96 / Chapter 4.1 --- Abstract --- p.96 / Chapter 4.2 --- Introduction --- p.98 / Chapter 4.3 --- Materials and Methods --- p.101 / Chapter 4.4 --- Results --- p.108 / Chapter 4.5 --- Discussion --- p.124 / Chapter Chapter V --- Conclusion and Future Plans --- p.129 / Chapter 5.1 --- Conclusion --- p.129 / Chapter 5.2 --- Future Plans --- p.131 / References --- p.133
38

Os estudos sobre a etiologia do câncer na virada do século XX e o médico brasileiro Alfredo Leal Pimenta Bueno

Andrade, Rodrigo de Oliveira 16 August 2016 (has links)
Submitted by Filipe dos Santos (fsantos@pucsp.br) on 2016-11-22T12:45:04Z No. of bitstreams: 1 Rodrigo de Oliveira Andrade.pdf: 1064494 bytes, checksum: 538b5c2fe9f0ed25b6af19d72a15810f (MD5) / Made available in DSpace on 2016-11-22T12:45:04Z (GMT). No. of bitstreams: 1 Rodrigo de Oliveira Andrade.pdf: 1064494 bytes, checksum: 538b5c2fe9f0ed25b6af19d72a15810f (MD5) Previous issue date: 2016-08-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The 19th century constitutes a period of strong incidence of researches on cell biology. With the advent of new microscopy techniques, a more comprehensive study of cells behaviour has allowed a better understanding of the conditions that could favour or even determine the appearance of tumours. From then on, several scientists have proposed conceptual, medical and institutional pathways of research and treatment against the disease. The aim of this work is to analyse the panorama of studies and theories on cancer etiology proposed between the latest decades of 19th century and the first two decades of 20th century. We intend to understand how the concepts related to cancer mechanisms have been built and reinterpreted over those decades, and how has this knowledge arrived in Brazil. In this regard, Brazilian doctor Alfredo Leal Pimenta Bueno’s work is going to be used as a case study. Pimenta Bueno presented his ideas on the biochemical phenomena that could trigger cancer in a series of scientific articles published in the Brazilian scientific journal O Brasil Médico between 1926 and 1928. In this dissertation, we show that cancer has transformed into an entity that was more and more discussed and studied in the Europe over the 19th century, and that its construction as a medical problem in Brazil during the first two decades of the 20th century occurred in a scenario in which the attention was still focused on diseases with a greater social impact, such as tuberculosis. At the same time, we have verified that Pimenta Bueno was one of the few Brazilian scientists who investigated cancer etiology, constructing his theory based on the writings of several scientists, appealing to them whenever necessary in order to justify his points of view. In his articles, Pimenta Bueno concludes that cancer could be caused by different agents — all of them would act in the way of causing an irritation, resulting in an over hydration inside cells, which would return to their embryonic stage and, finally, reacquire their proliferation capacity / O século XIX constitui um período de forte incidência de pesquisas no campo da biologia celular. Com o advento de novas técnicas de microscopia, o estudo detalhado do comportamento das células possibilitou um melhor entendimento das condições que favorecem ou determinam o surgimento dos tumores. A partir de então, diversos cientistas propuseram caminhos conceituais, médicos ou institucionais de pesquisa e tratamento para a enfermidade. O objetivo deste trabalho é analisar o panorama de estudos e teorias sobre a etiologia do câncer em fins do século XIX e início do século XX. Pretendemos compreender como os conceitos relacionados aos mecanismos da doença foram construídos e reinterpretados ao longo daquelas décadas e como esse conhecimento chegou ao Brasil. Para isso, usaremos como estudo de caso os trabalhos do médico mineiro Alfredo Leal Pimenta Bueno, que apresentou suas ideias sobre os fenômenos bioquímicos que desencadeariam o câncer em uma série de artigos na revista O Brasil Médico entre 1926 e 1928. Nesta dissertação, mostramos que o câncer se transformou durante o século XIX em uma entidade cada vez mais discutida e estudada na Europa, e que sua construção como problema médico no Brasil nas primeiras décadas do século XX se deu em meio a um cenário em que a preocupação maior ainda se centrava em doenças de maior impacto social, como a tuberculose. Ao mesmo tempo, verificamos que Pimenta Bueno foi um dos poucos cientistas brasileiros a investigar a etiologia do câncer, construindo seu discurso a partir dos escritos de diversos cientistas, recorrendo a esses autores sempre que preciso a fim de justificar seus pontos de vista. Pimenta Bueno conclui que o câncer teria as mais variadas causas, todas idênticas pelo só fato de que agiam produzindo uma irritação, de que resultaria uma super hidratação celular, sua volta ao estágio embrionário, e, finalmente, o reestabelecimento de sua capacidade de proliferação
39

Functional characterization of a Krüppel zinc finger protein- zinc finger protein 146. / CUHK electronic theses & dissertations collection

January 2008 (has links)
By means of reverse-transcription polymerase chain reaction, overexpression of ZNF146 was detected in two human HCC cell lines HepG2 and Hep3B and a clear relationship between HCC and overexpression of ZNF146 has been established. Subcellular localization of ZNF146 protein in liver cells was studied by generation and expression of a green fluorescent protein (GFP) fusion protein. The nuclear localization and the reported DNA binding ability of ZNF146 protein provided a hint that ZNF146 may carry out its function in the cell system by interacting with specific genomic DNA sequences. Recombinant ZNF146 protein was expressed using bacterial and yeast system for the genomic DNA pull down assay in the identification of potential interacting genomic DNA sequences. Several potential genomic DNA sequences that interact with ZNF146 were identified and the gene MDM2 is the one of the candidates that is directly related to human carcinogenesis. MDM2 is a negative regulator of the tumor suppresser protein p53. Deregulation of MDM2 will impair the cell's ability in cell cycle arrest, DNA repair and apoptosis upon induced DNA damage. / Hepatocellular carcinoma (HCC) is a type of primary malignant liver tumor. And is one of the most frequent malignancies worldwide. The focus of this research project is the characterization of a Kruppel zinc finger protein, zinc Finger Protein 146 (ZNF146) using HCC as a disease model. The aim of this project is to understand the functional role ZNF146 and try to explore the mechanism of how ZNF146 might be involved in the carcinogenesis of HCC. / In order to have a better understanding with the protein ZNF146, SUMOylation properties of this protein has been studied. SUMO1 modification on ZNF146 has already been reported. And in our study, experimental result demonstrated that ZNF146 is also modified by SUMO2 and SUMO3 in liver cells. Other than the SUMOylation sites for SUMO1 protein which has been reported, modification sites for SUMO2 at the K247 and K275 positions were mapped, while K191R, K219R, K247R, K256R and K275R, five positions were mapped for SUMO3 modification. A more complete picture of the SUMOylation properties of ZNF146 has been revealed. Since we hypothesized that ZNF146 is related to the p53 tumor suppressor, cell cycle control and DNA repair pathway, a cell cycle study using flow cytometry was performed for the investigation of the effect on cell cycle regulation by ZNF146 overexpression. In our study, ZNF146 overexpression promoted the G1/S transition in the cell division cycle, which indicated that liver cells were more active for the progression of cell cycle. / On the other hand, using cDNA microarray technology expression profiles of ZNF146 overexpressing and non-overexpressing liver cell lines were compared and with real-time polymerase chain reaction, six candidate genes CRLF1, IFI44, ST6GAL1, LOC441601, IL18 and RAD17 were confirmed with their deregulation induced by the overexpression of ZNF146. Four of the candidates, IFI44, LOC441601, IL18 and RAD17 were found to be related to the p53 tumor suppressor activity or DNA damage, repair response and control. This observation, together with the result of genomic DNA pull down assay, gives us a hint that ZNF146 is possibly involved in liver carcinogenesis by affecting DNA repair and cell cycle control upon induced DNA damage. / The gene ZNF146 codes for a member of the Kruppel zinc finger proteins, however ZNF146 protein is different from most members of the Kruppel zinc finger proteins subfamily. It encodes a 33 kDa protein solely composed of 10 zinc finger motifs and is devoid of any non-zinc finger regulatory domain for interactions with other proteins. ZNF146 overexpression has been reported in a number of cancers including colon cancer and pancreatic carcinoma. However, the functional role of ZNF146 overexpression in tumorigenesis is yet to be solved and not much research on how ZNF146 might be invovled in the establishment of HCC was published. / To conclude, the experimental results of this study support the hypothesis that ZNF146 overexpression may deregulating the cell division cycle and some genes differentially regulated upon over-expression of ZNF146 are related to the regulations of DNA damage response. Future research on ZNF146 can be focused on the detail regulatory pathway of ZNF146 overexpression and its interaction between the p53 tumor suppressor, DNA damage response and cell cycle regulation, and a fuller picture of how ZNF146 overexpression might induce hepatocarcinogenesis can be revealed. / Yeung, Tsz Lun. / Adviser: Miu Yee (Mary) Waye. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3329. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 287-304). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
40

Diet, hormones and breast cancer : a case-control study in women / by Thomas Edward Rohan

Rohan, Thomas Edward January 1986 (has links)
Bibliography: v. 2, leaves [410]-464 / 2 v. : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Community Medicine, 1986?

Page generated in 0.0514 seconds