• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 17
  • 6
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 179
  • 179
  • 31
  • 26
  • 25
  • 23
  • 20
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Controlling DNA compaction with cationic amphiphiles for efficient delivery systems-A step forward towards non-viral Gene Therapy

Savarala, Sushma January 2012 (has links)
The synthesis of pyridinium cationic lipids, their counter-ion exchange, and the transfection of lipoplexes consisting of these lipids with firefly luciferase plasmid DNA (6.7 KDa), into lung, prostate and breast cancer cell lines was investigated. The transfection ability of these newly synthesized compounds was found to be twice as high as DOTAP/cholesterol and LipofectamineTM (two commercially available successful transfection agents). The compaction of the DNA onto silica (SiO2) nanoparticles was also investigated. For this purpose, it was necessary to study the stability and fusion studies of colloidal systems composed of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine), a zwitterionic lipid, and mixtures of DMPC with cationic DMTAP (1,2-dimyristoyl-3-trimethylammonium-propane). / Chemistry
92

Quality of life and metabolic outcomes after total pancreatectomy and simultaneous islet autotransplantation

Ludwig, Stefan, Distler, Marius, Schubert, Undine, Schmid, Janine, Thies, Henriette, Welsch, Thilo, Hempel, Sebastian, Tonn, Torsten, Weitz, Jürgen, Bornstein, Stefan R., Ludwig, Barbara 30 May 2024 (has links)
Background Pancreas surgery remains technically challenging and is associated with considerable morbidity and mortality. Identification of predictive risk factors for complications have led to a stratified surgical approach and postoperative management. The option of simultaneous islet autotransplantation (sIAT) allows for significant attenuation of long-term metabolic and overall complications and improvement of quality of life (QoL). The potential of sIAT to stratify a priori the indication for total pancreatectomy is yet not adequately evaluated. Methods The aim of this analysis was to evaluate the potential of sIAT in patients undergoing total pancreatectomy to improve QoL, functional and overall outcome and therefore modify the surgical strategy towards earlier and extended indications. A center cohort of 24 patients undergoing pancreatectomy were simultaneously treated with IAT. Patients were retrospectively analyzed regarding in-hospital and overall mortality, postoperative complications, ICU stay, hospital stay, metabolic outcome, and QoL. Results Here we present that all patients undergoing primary total pancreatectomy or surviving complicated two-stage pancreas resection and receiving sIAT show excellent metabolic outcome (33% insulin independence, 66% partial graft function; HbA1c 6,1 ± 1,0%) and significant benefit regarding QoL. Primary total pancreatectomy leads to significantly improved overall outcome and a significant reduction in ICU- and hospital stay compared to a two-stage completion pancreatectomy approach. Conclusions The findings emphasize the importance of risk-stratified pancreas surgery. Feasibility of sIAT should govern the indication for primary total pancreatectomy particularly in high-risk patients. In rescue completion pancreatectomy sIAT should be performed whenever possible due to tremendous metabolic benefit and associated QoL.
93

Rational Engineering of Bacteria and Biohybrids for Enhanced Transport and Colonization in the Tumor Microenvironment

Leaman, Eric Joshua 13 August 2021 (has links)
One of the principal impediments to the broad success of conventional chemotherapy is poor delivery to and transport within the tumor microenvironment (TME), caused by irregular and leaky vasculature, the lack of functional lymphatics, and underscored by the overproduction of extracellular matrix (ECM) proteins such as collagen. Coupled with limited specificity, the high chemotherapeutic doses needed to effectively treat tumors often lead to unacceptable levels of damage to healthy tissues. Bacteria-based cancer therapy (BBCT) is an innovative alternative. Attenuated strains of species such as Salmonella Typhimurium have been shown to preferentially replicate in the TME, competing for cellular resources and imparting intrinsic and immune-mediated cytotoxic effects on cancer cells. Nevertheless, the immense successes observed in in vitro and immunocompromised murine models have not translated to the clinic, attributable to the lack of sufficient tumor colonization. Synthetic biology today enables the precision engineering of microbes with traits for improved survival, penetration, and replication in the TME, rationally optimizable through computational modeling. In this dissertation, we explore several facets of rationally engineering of bacteria toward augmenting bacterial penetration and retention in the TME. Namely, we (1) develop a novel assay to interrogate the neutrophil migratory response to pathogens and characterize the effects of modifying the molecular structure of the outer membrane (OM) of S. Typhimurium, (2) develop a mathematical model of bacterial intratumoral transport and growth and explore the effects of nutrient availability and the tumor ECM on colonization, (3) engineer bacteria that constitutively secrete collagenase and show significantly augmented transport in collagen hydrogels and collagen-rich tumor spheroids, and (4) develop computational models to explore control schemes for the programmed behavior of bacteria-based biohybrid systems, which will leverage the engineered bacteria to deliver therapeutics to the TME. Our work serves as the foundation for the logical and efficient design of the next generation of BBCTs. / Doctor of Philosophy / Cancer is one of the deadliest diseases facing our world today not because of a lack of effective medications in most cases, but because of our inability to target the diseased sites with those treatments. Many tumors lie in deep and sensitive regions that render them untouchable by direct physical means. Poor vascularization leads to only small fractions of toxic, systemically injected drugs being deposited in tumors. State-of-the-art treatments such as so-called "nano-medicines" that can target features of the diseased tissues and immunotherapies that train the immune system to attack tumor cells have made tremendous strides, but for many types of cancer, the underlying challenge of reaching cells far from blood vessels and targeting immunologically cold tumors remains. Bacteria-based cancer therapy (BBCT) presents an exciting opportunity to address these challenges. Based on microorganisms that can self-propel, proliferate, and display a preference for diseased tissues, their potential not only to carry chemotherapeutic payloads but also to elicit directly toxic or immunotherapeutic effects on cancer cells is clear from experimental work. Nevertheless, the same delivery and transport barriers facing other treatments, as well as immune-mediated clearance, have limited BBCTs' clinical success. Advances in synthetic biology and computational modeling today make the precision engineering of BBCT for traits that favor targeted cancer therapy a reality. The central hypothesis of this dissertation is that endowing tumor-targeting bacteria with a tissue-degrading enzyme has the potential to enhance tumor penetration and colonization. This dissertation work has led to development of computational and experimental frameworks for the design, testing, and optimization of BBCTs through direct quantitative assessment of the immune response, simulations to both optimize nutrient consumption for optimal growth and for programming genetic control strategies, and characterization of transport in tissue. Our work serves as a foundation for engineering "intelligent" BBCT.
94

Investigating the Applications of Electroporation Therapy for Targeted Treatment of Glioblastoma Multiforme Based on Malignant Properties of Cells

Ivey, Jill Winters 05 September 2017 (has links)
Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer with an average survival time of 15 months. GBM is considered incurable with even the most aggressive multimodal therapies and is characterized by near universal recurrence. Irreversible electroporation (IRE) is a cellular ablation method currently being investigated as a therapy for a variety of cancers. Application of IRE involves insertion of electrodes into tissue to deliver pulsed electric fields (PEFs), which destabilize the cell membrane past the point of recovery, thereby inducing cell death. While this treatment modality has numerous advantages, the lack of selectivity for malignant cells limits its application in the brain where damage to healthy tissue is especially deleterious. In this dissertation we hypothesize that a form of IRE therapy, high-frequency IRE (H-FIRE), may be able to act as a selective targeted therapy for GBM due to its ability to create an electric field inside a cell to interact with altered inner organelles. Through a comprehensive investigation involving experimental testing combined with numerical modeling, we have attained results in strong support of this hypothesis. Using tissue engineered hydrogels as our platform for therapy testing, we demonstrate selective ablation of GBM cells. We develop mathematical models that predict the majority of the electric field produced by H-FIRE pulses reach the inside of the cell. We demonstrate that the increased nuclear to cytoplasm ratio (NCR) of malignant GBM cells compared to healthy brain—evidenced in vivo and in in vitro tissue mimics—is correlated with greater ablation volumes and thus lower electric field thresholds for cell death when treated with H-FIRE. We enhance the selectivity achieved with H-FIRE using a molecularly targeted drug that induces an increase in NCR. We tune the treatment pulse parameters to increase selective malignant cell killing. Finally, we demonstrate the ability of H-FIRE to ablate therapy-resistant GBM cells which are a focus of many next-generation GBM therapies. We believe the evidence presented in this dissertation represents the beginning stages in the development of H-FIRE as a selective therapy to be used for treatment of human brain cancer. / Ph. D. / Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer with an average survival time of 15 months. GBM is considered incurable with even the most aggressive multimodal therapies and is characterized by near universal recurrence. Irreversible electroporation (IRE) is a therapy currently being developed for the treatment of a variety of cancers. Application of IRE involves the delivery of energy directly into the tumor tissue in the form of pulsed electric fields (PEFs). These PEFs destabilize the cell membrane past the point of recovery, thereby inducing cell death. Though this treatment modality has numerous advantages, the lack of selectivity for malignant cells limits its application in the brain where damage to healthy tissue is especially deleterious. In this dissertation we hypothesize that a form of IRE therapy, high-frequency IRE (H-FIRE), may be able to act as a selective targeted therapy for GBM due to its ability to create electric fields inside cells. Because cancer is characterized by alterations in inner organelles compared to healthy cells, electric fields inside the cell may be able to target these alterations resulting in selective malignant cell killing. Through a comprehensive investigation involving experimental testing combined with numerical modeling, we have attained results in strong support of this hypothesis. We have successfully demonstrated selective ablation of malignant GBM cells. We have shown that the increased nuclear to cytoplasm ratio (NCR) of malignant GBM cells compared to healthy brain—evidenced in vivo and in in vitro tissue mimics—is correlated with greater ablation volumes and thus lower electric field thresholds for cell death when treated with H-FIRE. We have enhanced the selectivity v achieved with H-FIRE using a molecularly targeted drug that induces an increase in NCR. We have tuned the treatment parameters to increase selective malignant cell killing. Finally, we have demonstrated the ability of H-FIRE to ablate therapy-resistant GBM cells which are a focus of many next-generation GBM therapies. We believe the evidence presented in this dissertation represents the beginning stages in the development of H-FIRE as a selective therapy to be used for treatment of human brain cancer.
95

DESIGN, SYNTHESIS, AND PRECLINICAL EVALUATION OF RADIOACTIVE ACIDIC PEPTIDE CONJUGATES FOR THE TREATMENT OF BONE CANCERS

Losha Dasol Jung (20298624) 10 December 2024 (has links)
<p dir="ltr">Breast and prostate cancers frequently metastasize to bone, with approximately 50% of patients with advanced breast cancer and 70-80% of those with advanced prostate cancer developing bone metastasis<sup>1-4</sup>. Once cancer cells invade osseous tissues, the prognosis for both cancers declines drastically. Despite the severity of the condition, there is currently no cure for bone metastasis, and existing treatments primarily focus on managing skeletal-related events (Skeletal related events) or alleviating bone damage caused by tumor growth. These therapies, however, do not address the underlying tumor burden within the bones, highlighting the critical need for the development of new, targeted therapeutics.</p><p dir="ltr">To address this unmet need, our project aimed to design, synthesize, and evaluate novel bone-targeting radiotherapeutic agents that are tailored to treat bone metastasis. These agents were specifically developed to localize to bone lesions and deliver targeted radiation to metastatic tumor cells, thereby potentially improving patient outcomes. We conducted thorough preclinical assessments to evaluate both the therapeutic efficacy and safety profile of these agents, focusing on their ability to selectively target bone tumors while minimizing off-target effects on healthy tissues.</p><p dir="ltr">Our findings demonstrate the potential of these bone-targeting radiotherapeutics not only to reduce tumor burden in bone but also to offer a more effective therapeutic approach for managing metastatic cancer. These agents may represent a significant step forward in addressing the poor prognosis associated with bone metastasis in patients with advanced breast and prostate cancers, offering new hope for improved survival and quality of life.</p>
96

Irreversible Electroporation for the Treatment of Aggressive High-Grade Glioma

Garcia, Paulo A. 21 December 2010 (has links)
Malignant gliomas (MG), most notably glioblastoma multiforme (GBM), are among the most aggressive of all malignancies. High-grade variants of this type of brain cancer are generally considered incurable with singular or multimodal therapies. Many patients with GBM die within one year of diagnosis, and the 5-year survival rate in people is approximately 10%. Despite extensive research in diagnostic and therapeutic technologies, very few developments have emerged that significantly improve survival over the last seven decades. Irreversible electroporation (IRE) is a new non-thermal focal tissue ablation technique that uses low-energy electric pulses to destabilize cell membranes, thus achieving tissue death. The procedure is minimally invasive and is performed through small electrodes inserted into the tissue with treatment duration of about one minute. The pulses create an electric field that induces an increase in the resting transmembrane potential (TMP) of the cells in the tissue. The induced increase in the TMP is dependent on the electric pulse parameters. Depending on the magnitude of the induced TMP the electric pulses can have no effect, transiently increase membrane permeability or cause spontaneous death. In this dissertation we hypothesize that irreversible electroporation is capable of ablating normal (gray and white matter) and pathological (MG and/or GBM) brain tissue in a highly focused non-thermal manner that is modulated through pulse parameters and electrode configuration. Through a comprehensive experimental and numerical investigation, we tested and attained results strongly supporting our hypothesis. Specifically, we developed numerical models that were capable of simulating an entire IRE treatment protocol and would take into account pulse parameters (e.g. duration, frequency, repetition rate and strength) in addition to the dynamic changes in tissue electrical conductivity due to electroporation and joule heating, as well as biologically relevant processes such as blood perfusion and metabolic heat. We also provided a method to isolate the IRE effects from undesired thermal damage in models that were validated with real-time temperature measurements during the delivery of the pulses. Finally we outlined a procedure to use 3D volumetric reconstructions of IRE lesions using patient specific MRI scans in conjunction with the models described for establishing field thresholds or performing treatment planning prior to the surgical procedure; thus supplying the readers with the tools and understanding necessary to design appropriate treatment protocols for their specific application. Experimentally we presented the first systematic in vivo study of IRE in normal canine brain and the multimodal treatment of a canine MG patient. We confirmed that the procedure can be applied safely in the brain and was well tolerated clinically. The lesions created with IRE were sub-millimeter in resolution and we achieved 75% tumor volume reduction within 3 days post-IRE in the patient. In addition to the sharp delineation between necrotic and normal brain, the treatments spared the major blood vessels, making it appropriate for treatment of tumors adjacent to, or enveloping critical vascular structures. We believe that irreversible electroporation will play a key role in the treatment of intracranial disorders including malignant brain cancer in which the intent is to focally kill undesired tissue while minimizing damage to surrounding healthy tissue. / Ph. D.
97

Novel Perspectives on the Utilization of Chemotactic Salmonella Typhimurium VNP20009 as an Anticancer Agent

Broadway, Katherine Marie 22 August 2018 (has links)
Attenuated bacterial strains have been investigated on the premise of selective tumor colonization and drug delivery potential for decades. Salmonella Typhimurium VNP20009 was derived from the parental strain 14028 through genetic modification and tumor targeting ability, being well studied for anticancer effects in mice. In 2001 Phase 1 Clinical Trials, patients diagnosed with melanoma were introduced with VNP20009, resulting in safe delivery of the strain and targeting to the tumor, however no anticancer effects were observed. Recently, it was discovered that VNP20009 contains a SNP in cheY, which encodes the chemotaxis response regulator of flagellar motor function, rendering the strain deficient in chemotaxis. Replacement of cheY with the 14028 wild-type copy resulted in a 70% restoration of phenotype in traditional chemotaxis capillary assays compared to the parental strain. We attempted to optimize the chemotactic potential of VNP20009 but were unable without reversing the attenuated state of VNP20009. Due to the role of chemotaxis in bacterial tumor colonization and eradication remaining unclear, we aimed to compare VNP20009 and VNP20009 cheY+ primary tumor colonization and impact on metastasis in an aggressive 4T1 mouse mammary carcinoma model. Bacterial tumor colonization and metastatic potential of the cancerous cells to the lungs appear bacterial chemotaxis independent. Moreover, mice bearing tumors exposed to Salmonella exhibited increased morbidity that was associated with significant liver disease. Our results suggest that in our timeline VNP20009 may not be safe or efficacious when used in the context of immunocompetent animals with aggressive, metastatic breast cancer. In a novel approach, we aimed to understand the bacterial-cancer cell relationship within the tumor microenvironment, with an emphasis on gene expression changes occurring within the eukaryotic transcriptome. We employed the B16-F10 mouse melanoma model because VNP20009 is known to colonize and eradicate these tumors in mice. First, we optimized a timeline for Salmonella treatment of mouse melanoma, finding a dramatic delay in tumor growth between 2 and 7 days due to the presence of Salmonella. Additionally, we observed upregulation of the IFN-gamma signaling pathway within tumor tissue upon exposure to Salmonella after 7 days. In future studies, we aim to analyze the bacterial transcriptome in the tumor microenvironment to gain unique understanding and contribute to knowledge supporting bacterial-mediated cancer therapies. / Ph. D. / Bacteria have become our allies in the fight against cancer. Strains of Salmonella, normally thought of as a cause of gastrointestinal discomfort, are able to target cancer in the body and effectively shrink tumors in several animal models. Specifically, a strain of Salmonella Typhimurium called VNP20009, has shown great promise as an anticancer agent. Research on VNP20009 culminated in a Phase 1 Clinical Trial in which safe delivery of the strain and targeting to the tumor were achieved, however no anticancer effects were observed. We hypothesized further targeting of Salmonella could be achieved using chemotaxis, the coordination of flagellar driven movement with sensing environmental chemical gradients, akin to the nose of the bacterium. We discovered strain VNP20009 to be defective in chemotaxis, due to a genetic mutation that occurred during the strain’s construction. We were able to restore chemotaxis of the strain, at least partially, and discovered we could not further optimize chemotaxis without compromising the safety profile of VNP20009. We tested the effect of chemotaxis on tumor colonization in a mouse breast cancer model and found that the bacteria had an additive effect in causing liver disease and morbidity of the mice. We finally examined genome-wide gene expression changes occurring in the tumor microenvironment, as a response to anticancer agent VNP20009 colonization in a mouse melanoma model of cancer. Overall, this work contributes significantly to the understanding of VNP20009 chemotaxis and its tumor targeting abilities.
98

Tissue Engineered Scaffolds and Three Dimensional Tumor Constructs to Evaluate Pulsed Electric Field Treatments

Rolong, Andrea 19 September 2018 (has links)
This work investigates the use of irreversible electroporation (IRE) for tissue engineering applications and as a cancer ablation therapy. IRE uses short, high-intensity electric pulses to create pores in a cell's membrane and disrupt its stability. At a certain energy level, damage to the cell becomes too great and it leads to cell death. The particular mechanisms that drive this response are still not completely understood. Thus, further characterization of this behavior for cell death induced by pulsed electric fields (PEFs) will advance the understanding of these types of therapies and encourage their use to treat unresectable tumors that can benefit from the non-thermal mechanism of action which spares critical blood vessels and nerves in the surrounding area. We evaluate the response to PEFs by different cell types through experimental testing combined with computer simulations of these treatments. We show that IRE can be used to kill a specific type of bacteria that produce cellulose which can be used as an implantable material to repair damaged tissues. By killing these bacteria at particular times and locations during their cellulose production, we can create conduits in the overall structure of this material for the transport of oxygen and nutrients to the cells within the area after implantation. The use of tissue models also plays a key role in the investigation of various cancer treatments by providing a controlled environment which can mimic the state of cells within a tumor. We use tumor models comprised of a mix of collagen and cancer cells to evaluate their response to IRE based on the parameters that induce cell death and the time it takes for this process to occur. The treatment of prostate and pancreatic cancer cells with standard monopolar (only positive polarity) IRE pulses resulted in different time points for a full lesion (area of cell death) to develop for each cell type. These results indicate the presence of secondary processes within a cell that induce further cell death in the border of the lesion and cause the lesion to increase in size several hours after treatment. The use of high-frequency irreversible electroporation (H-FIRE)--comprised of short bursts of high-intensity, bipolar (both positive and negative polarity) pulses--can selectively treat cancer cells while keeping healthy cells in the neighboring areas alive. We show that H-FIRE pulses can target tumor-initiating cells (TICs) and late-stage, malignant cancer cells over non-malignant cells using a mouse ovarian cancer model representative of different stages of disease progression. To further explore the mechanisms that drive this difference in response to IRE and H-FIRE, we used more complex tumor models. Spheroids are a type of 3D cell culture model characterized by the aggregation of one or more types of cells within a single compact structure; when embedded in collagen gels, these provide cell-to-cell contact and cell-to-matrix adhesion by interactions of cells with the collagen fibers (closely mimicking the tumor microenvironment). The parameters for successful ablation with IRE and H-FIRE can be further optimized with the use of these models and the underlying mechanisms driving the response to PEFs at the cellular level can be revealed. / Ph. D. / This work investigates the use of irreversible electroporation (IRE) for tissue engineering applications and as a cancer ablation therapy. IRE uses short, high-intensity electric pulses to create pores in a cell’s membrane and disrupt its stability. At a certain energy level, damage to the cell becomes too great and it leads to cell death. The particular mechanisms that drive this response are still not completely understood. Thus, further characterization of this behavior for cell death induced by pulsed electric fields (PEFs) will advance the understanding of these types of therapies and encourage their use to treat unresectable tumors that can benefit from the non-thermal mechanism of action which spares critical blood vessels and nerves in the surrounding area. We evaluate the response to PEFs by different cell types through experimental testing combined with computer simulations of these treatments. We show that IRE can be used to kill a specific type of bacteria that produce cellulose which can be used as an implantable material to repair damaged tissues. By killing these bacteria at particular times and locations during their cellulose production, we can create conduits in the overall structure of this material for the transport of oxygen and nutrients to the cells within the area after implantation. The use of tissue models also plays a key role in the investigation of various cancer treatments by providing a controlled environment which can mimic the state of cells within a tumor. We use tumor models comprised of a mix of collagen and cancer cells to evaluate their response to IRE based on the parameters that induce cell death and the time it takes for this process to occur. The treatment of prostate and pancreatic cancer cells with standard monopolar (only positive polarity) IRE pulses resulted in different time points for a full lesion (area of cell death) to develop for each cell type. These results indicate the presence of secondary processes within a cell that induce further cell death in the border of the lesion and cause the lesion to increase in size several hours after treatment. The use of high-frequency irreversible electroporation (H-FIRE)—comprised of short bursts of high-intensity, bipolar (both positive and negative polarity) pulses—can selectively treat cancer cells while keeping healthy cells in the neighboring areas alive. We show that H-FIRE pulses can target tumor-initiating cells (TICs) and late-stage, malignant cancer cells over non-malignant cells using a mouse ovarian cancer model representative of different stages of disease progression. To further explore the mechanisms that drive this difference in response to IRE and H-FIRE, we used more complex tumor models. Spheroids are a type of 3D cell culture model characterized by the aggregation of one or more types of cells within a single compact structure; when embedded in collagen gels, these provide cell-to-cell contact and cell-to-matrix adhesion by interactions of cells with the collagen fibers (closely mimicking the tumor microenvironment). The parameters for successful ablation with IRE and H-FIRE can be further optimized with the use of these models and the underlying mechanisms driving the response to PEFs at the cellular level can be revealed.
99

Biodegradable Polymeric Microspheres for Magnetically Guided Drug Delivery to Tumors

Green, Tyler Payson 07 November 2024 (has links) (PDF)
This thesis investigates the feasibility of utilizing biodegradable polymeric microspheres loaded with the anticancer drug 5-fluorouracil (5FU) and superparamagnetic iron oxide nanoparticles (SPIONs) to magnetically deliver the cancer therapeutic 5FU to a target tumor in the human body. The primary method of material loading consisted of a w/o/w double emulsion mechanism which 1) loads and protects 5FU in the inner water phase consisting of distilled water and polyvinyl alcohol (PVA), 2) dispersed SPIONs in the biodegradable polymeric organic phase consisting of methylene chloride (MeCl2) for eventual magnetic transport, and 3) suspended these w/o emulsion droplets in an outer aqueous phase comprised of water and PVA and then evaporating the solvent by convection. This procedure produced dried double emulsion microspheres below 2 µm in diameter. They were characterized using scanning electron microscopy (SEM), and magnetometry, which demonstrated their size and superparamagnetic properties. The encapsulation efficiency of 5FU into these polymeric microspheres was above 95%. Drug release of 5FU from dried double emulsion microspheres was significant over 63 days in water and phosphate buffered saline (PBS). Drug release was faster at 37 °C compared to room temperature (21 °C). The medium of PBS at pH 7.4 and 5.4 promoted faster release than distilled water at pH 7.0. Release was faster from PLGA than from PLA. Antibiotic potency of 5FU remained effective after drug release and degradation of carrier. Application of these microspheres in future clinical trials may present a noninvasive, low-risk method to treating malign tumors in nonresectable regions while demonstrating more effective results than systemic administration of chemotherapy. This research presents a significant innovation in therapeutic drug delivery technology for nonresectable cancerous tumors, particularly in the head and neck regions.
100

Development of Novel Tumor-Targeted Theranostic Nanoparticles Activated by Membrane-Type Matrix Metalloproteinases for Combined Cancer Magnetic Resonance Imaging and Therapy

Ansari, C., Tikhomirov, G.A., Hong, S.H., Falconer, Robert A., Loadman, Paul, Gill, Jason H., Castaneda, R., Hazard, F.K., Tong, L., Lenkov, O.D., Felsher, D.W., Rao, J., Daldrup-Link, H.E. 27 August 2013 (has links)
No / A major drawback with current cancer therapy is the prevalence of unrequired doselimiting toxicity to non-cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) is described for enzyme-specifi c drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA-approved iron oxide nanoparticles ferumoxytol to an MMP-activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIOICTs (TNPs). Signifi cant cell death is observed in TNP-treated MMP-14 positive MMTVPyMT breast cancer cells in vitro, but not MMP-14 negative fi broblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV-PyMT tumor-bearing mice and subsequent MRI demonstrates signifi cant tumor selective accumulation of the TNP, an observation confi rmed by histopathology. Treatment with CLIO-ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO-ICTs, ICT, or ferumoxytol. These fi ndings demonstrate proof of concept for a new nanotemplate that integrates tumor specifi city, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme-activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to signifi cantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens. / Yorkshire Cancer Research

Page generated in 0.0482 seconds