• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caracterização de imagens utilizando redes neurais artificiais

Ribeiro, Eduardo Ferreira 09 June 2009 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / Image representation in Content Based Image Retrieval systems is a fundamental task. The results obtained by these systems strongly depend on the choice of features selected to represent an image. Works in the literature show that intelligent techniques are used to minimize the semantic gap between the limited power of machine interpretation and human subjectivity. In this work the use of artificial neural networks to characterize images in a high-level space from an initial characterization based on low-level features (color, shape and texture) is proposed. Experiments on 3 databases of various kinds, one with general images (BD-12750 ), one with texture images (Vistex-167 ) and other with buildings (ZuBuD) are performed to exemplify the application of the method and to show the effectiveness of the model. Furthermore, the application of the proposed method in the high-level characterization of complex motions patterns is presented. / Em sistemas de Recuperação de Imagens Baseada em Conteúdo a representação das imagens desempenham um papel fundamental. Os resultados obtidos por esses sistemas dependem fortemente da escolha das características selecionadas para representar uma imagem. Trabalhos existentes na literatura evidenciam que técnicas inteligentes conseguem minimizar o gap- semântico existente entre o poder de interpretação limitado das máquinas e a subjetividade humana. Neste trabalho é proposto o uso das redes neurais artificiais para caracterizar imagens neurosemânticamente à partir de uma caracterização inicial baseada em características de baixo nível (cor, forma e textura). Testes em 3 bases de dados de naturezas diferentes, um de imagens mais gerais (BD-12750 ), um de texturas (Vistex-167 ) e outro de prédios (ZuBuD) exemplificam a aplicação do método como também mostram a eficácia do modelo. Ainda é apresentada a aplicação do método proposto na caracterização neurosemântica de movimentos complexos em vídeos. / Mestre em Ciência da Computação

Page generated in 0.1309 seconds