• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 17
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Sources and Fate of Chromophoric Dissolved Organic Matter in the Arctic Ocean and Surrounding Watersheds

Walker, Sally Annette 2012 August 1900 (has links)
Given the pace of climate change in the Arctic, it is vital to better constrain terrigenous dissolved organic matter (tDOM) fluctuations in large Arctic Rivers and the role that climate change may bring to tDOM inputs into the Arctic Ocean and to the global carbon cycle. This project uses the optical properties of chromophoric dissolved organic matter (CDOM) to investigate the quality, quantity and fate of dissolved organic matter (DOM) in large Arctic Rivers and the interior Arctic Basin. In large rivers surrounding the Arctic, peak discharge CDOM is largely derived from fresh terrestrial plant material whereas during base flow the CDOM pool has a greater microbial imprint, particularly in the Mackenzie. The higher microbial imprint in the Mackenzie can be explained by longer water residence times, which may be important in a warming climate where increased precipitation rates will likely lead to increased hydrological connectivity and therefore longer water residence times. In surface waters of the Canadian Archipelago, 17 % of the DOM pool is of terrestrial origin, even though waters are diluted with sea ice melt, suggesting the likelihood of a subsurface plume of tDOM entrained within river runoff from Arctic Rivers. In the interior Arctic, an elevated terrestrial CDOM signal in the Eurasian Basin (EB) points to the presence of Eurasian river CDOM entrained within river runoff in the Transpolar Drift. In contrast, autochthonous/microbial CDOM sources become more important the Canadian Basin (CB) and the terrestrial CDOM signal is much lower relative to the EB. A good constraint on the nature and distributions of freshwater (FW) in the Arctic Ocean is paramount to understand the role climate change may play for the Arctic’s hydrological cycle. During this study, we used the spatial patterns of terrestrially derived CDOM to better understand the distribution and nature of river runoff across the upper Arctic Basin. This study illustrates the usefulness of CDOM to finger-print water masses within the Arctic Ocean and shows promise to improve our understanding of upper Arctic Ocean ventilation patterns.
22

Carbon and nitrogen cycling in permeable continental shelf sediments and porewater solute exchange across the sediment-water interface

Rao, Alexandra Mina Fernandes. January 2006 (has links)
Thesis (Ph. D.)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2007. / Martial Taillefert, Committee Member ; Jay Brandes, Committee Member ; Markus Huettel, Committee Member ; Philip Froelich, Committee Member ; Ellery Ingall, Committee Member ; Richard A. Jahnke, Committee Chair.
23

Interacting effects of growing season and winter climate change on nitrogen and carbon cycling in northern hardwood forests

Sanders-DeMott, Rebecca 13 March 2017 (has links)
Human activities such as fossil fuel combustion and deforestation have increased atmospheric concentrations of carbon dioxide, reactive nitrogen, and other greenhouse gases. As a result, Earth's surface has warmed by 0.85 °C since the pre-industrial era and will continue to warm. Many northern latitude temperate forest ecosystems mitigate the effects of both elevated carbon dioxide and atmospheric nitrogen deposition through retention of carbon and nitrogen in plants and soils. However, the continued ability of these ecosystems to store carbon and nitrogen will be altered with continued climate change. Warmer winters will lead to reduced depth and duration of snowpack, which insulates soils from cold winter air. Climate change over the next century will therefore affect soil temperatures in northern temperate forests in opposing directions across seasons, with warmer soils in the growing season and colder, more variable soil temperatures in winter. Warmer growing seasons generally increase ecosystem uptake and storage of carbon and nitrogen, whereas a smaller snowpack and colder soils in winter reduce rates of ecosystem nutrient cycling and plant growth. My dissertation aims to understand how climate change in the growing season and winter interact to affect function and nitrogen cycling in northern hardwood forest ecosystems. I accomplished this goal through formal literature review and two climate change manipulation experiments at Hubbard Brook Experimental Forest, NH. I found that although 67% of climate change experiments were conducted in seasonally snow covered ecosystems, only 14% take into account the effects of distinct climate changes in winter. By simulating climate change across seasons, I demonstrated that changes in nitrogen cycling caused by increased soil freezing in winter are not offset by warming in the growing season. Moreover, shifts in plant function due to winter climate change are mediated through a combination of changes in snow depth, soil temperature, and plant-herbivore interactions that differentially affect above- and belowground plant components. These results would not be evident from examining climate change in either the growing season or winter alone and demonstrate the need for considering seasonally distinct climate change to determine how nitrogen and carbon cycling will change in the future.
24

Soil-Climate Feedbacks: Understanding the Controls and Ecosystem Responses of the Carbon Cycle Under a Changing Climate

Reynolds, Lorien 27 October 2016 (has links)
Soil organic matter (SOM) decomposition and formation is an important climate feedback, with the potential to amplify or offset climate forcing. To understand the fate of soil carbon (C) stores and fluxes (i.e., soil respiration) under future climate it is necessary to investigate responses across spatial and temporal scales, from the ecosystem to the molecular level, from diurnal to decadal trends. Moreover, it is important to question the assumptions and paradigms that underlie apparently paradoxical evidence to reveal the true nature of soil-climate feedbacks. My dissertation includes research into the response of soil respiration in Pacific Northwest prairies to warming and wetting along a natural regional climate gradient (Chapter II), and then delves deeper into the mechanisms underlying SOM decomposition and formation, examining the temperature sensitivity of SOM decomposition of prairie soils that were experimentally warmed for ~2 yr, and a forest soil in which litter-inputs were manipulation for 20 yr (Chapter III), and finally testing soil C cycling dynamics, including mineral-associated C pools, decomposition dynamics, and the molecular nature of SOM itself, under litter-manipulation in order to understand the controls on SOM formation and mineralization (Chapter IV). This dissertation includes previously published and unpublished coauthored material; see the individual chapters for a list of co-authors, and description of contributions.
25

Climate change impacts on the ocean’s biological carbon pump in a CMIP6 Earth System Model:

Walker, Stevie January 2021 (has links)
Thesis advisor: Hilary Palevsky / The ocean plays a key role in global carbon cycling, taking up CO2 from the atmosphere. A fraction of this CO2 is converted into organic carbon through primary production in the surface ocean and sequestered in the deep ocean through a process known as the biological pump. The ability of the biological pump to sequester carbon away from the atmosphere is influenced by the interaction between the annual cycle of ocean mixed layer depth (MLD), primary production, and ecosystem processes that influence export efficiency. Gravitational sinking of particulate organic carbon (POC) is the largest component of the biological pump and the aspect that is best represented in Earth System Models (ESMs). I use ESM data from CESM2, an ESM participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6), to investigate how a high-emissions climate change scenario will impact POC flux globally and regionally over the 21st century. The model simulates a 4.4% decrease in global POC flux at the 100 m depth horizon, from 7.12 Pg C/yr in the short-term (2014-2034) to 6.81 Pg C/yr in the long-term (2079-2099), indicating that the biological pump will become less efficient overall at sequestering carbon. However, the extent of change varies across the globe, including the largest POC flux declines in the North Atlantic, where the maximum annual MLD is projected to shoal immensely. In the future, a multi-model comparison across ESMs will allow for further analysis on the variability of these changes to the biological pump. / Thesis (BS) — Boston College, 2021. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Departmental Honors. / Discipline: Earth and Environmental Science.
26

Soil Microbial Responses to Different Precipitation Regimes Across a Southwestern United States Elevation Gradient

January 2019 (has links)
abstract: Soil organic carbon (SOC) is a critical component of the global carbon (C) cycle, accounting for more C than the biotic and atmospheric pools combined. Microbes play an important role in soil C cycling, with abiotic conditions such as soil moisture and temperature governing microbial activity and subsequent soil C processes. Predictions for future climate include warmer temperatures and altered precipitation regimes, suggesting impacts on future soil C cycling. However, it is uncertain how soil microbial communities and subsequent soil organic carbon pools will respond to these changes, particularly in dryland ecosystems. A knowledge gap exists in soil microbial community responses to short- versus long-term precipitation alteration in dryland systems. Assessing soil C cycle processes and microbial community responses under current and altered precipitation patterns will aid in understanding how C pools and cycling might be altered by climate change. This study investigates how soil microbial communities are influenced by established climate regimes and extreme changes in short-term precipitation patterns across a 1000 m elevation gradient in northern Arizona, where precipitation increases with elevation. Precipitation was manipulated (50% addition and 50% exclusion of ambient rainfall) for two summer rainy seasons at five sites across the elevation gradient. In situ and ex situ soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were measured in precipitation treatments in all sites. Soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were highest at the three highest elevation sites compared to the two lowest elevation sites. Within sites, precipitation treatments did not change microbial biomass C, extracellular enzyme activity, and SOC. Soil CO2 flux was greater under precipitation addition treatments than exclusion treatments at both the highest elevation site and second lowest elevation site. Ex situ respiration differed among the precipitation treatments only at the lowest elevation site, where respiration was enhanced in the precipitation addition plots. These results suggest soil C cycling will respond to long-term changes in precipitation, but pools and fluxes of carbon will likely show site-specific sensitivities to short-term precipitation patterns that are also expected with climate change. / Dissertation/Thesis / Masters Thesis Biology 2019
27

Microbial and Environmental Drivers of Soil Respiration Differ Along Montane to Urban Transitions

Russell, Kerri Ann 01 December 2018 (has links)
In natural ecosystems, like deciduous and coniferous forests, soil CO2 flux or soil respiration is highly variable and influenced by multiple factors including temperature, precipitation, dissolved soil organic carbon (DOC), dissolved organic matter (DOM), and bacterial and fungal biomass and diversity. However, as the human population continues to grow rapidly, so too do urbanized landscapes with unknown consequences to soil respiration. To determine the extent urbanization influences seasonal shifts in microorganisms and environmental drivers alter soil respiration, we evaluated bacterial and fungal communities, soil physiochemical characteristics, and respiration in forested and urbanizing ecosystems in three watersheds across northern Utah, USA. Based on the next-generation sequencing of the 16s DNA and RNA, we found that montane bacteria were predominantly structured by season while urban bacteria were influenced by degree of urbanization. There was no apparent effect of season on montane fungi, but urban fungal communities followed patterns similar to urban bacterial communities. Bacterial diversity was sensitive to seasonality, especially in montane ecosystems, declining 21-34% from spring to summer and staying relatively low into fall, and fungal diversity was generally depressed in spring. Urban bacterial communities were differentiated by substantially more bacterial taxa with 62 unique OTUs within families structing phylogenetic differences compared with only 18 taxa differentiating montane communities. Similar to bacteria and fungi, DOC and ammonium concentrations fluctuated predominantly by season while these same parameters where highly variable among urban soils among the three watersheds. Structural components of DOM via parallel factor analysis (PARAFAC) of fluorescence excitation-emission matrices show varying patterns between montane and urban systems with humic substance resistance to biodegradability found more dominantly in montane systems. Incorporating all soil chemical parameters, daily temperature and moisture, and fungal and bacterial diversity and richness in mixed linear effects models describing daily CO2 over all seasons, we found that a single model best described montane soil respiration, while individual watershed models best described urban respiration. Montane respiration was related to the availability of DOC, different DOM components, and rRNA-based bacterial diversity . Alternatively, urban respiration was influenced by either bacterial diversity and richness in our rapidly urbanizing environment, DOM characteristics and soil O2 in the more agricultural urban soils, or the DOM parameter humification index (HIX) in highly urbanized soils. Our results suggest that urbanization creates distinct bacterial and fungal communities with a single soil biotic or chemical parameter structuring soil respiration, while montane ecosystems select for similar bacterial and fungal communities with respiration sensitive to fluctuations in soil moisture, bacteria and the recalcitrance of carbon (C) resources.
28

Growth and mortality of bacterial subgroups with different types of respiratory quinone in Lake Biwa / 琵琶湖における異なる呼吸鎖キノンを保持する細菌亜集団の増殖と死滅

Takasu, Hiroyuki 23 May 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第17775号 / 理博第3898号 / 新制||理||1562(附属図書館) / 30582 / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 中野 伸一, 准教授 奥田 昇, 教授 疋田 努 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
29

Microbial Functional Activity and Diversity Patterns at Multiple Spatial Scales

Feinstein, Larry M. 17 July 2012 (has links)
No description available.
30

CAUSES AND CONSEQUENCES OF VARIATION IN UV TRANSPARENCY FOR FRESHWATER ECOSYSTEMS

Rose, Kevin C. 03 May 2011 (has links)
No description available.

Page generated in 0.0703 seconds