Spelling suggestions: "subject:"carbon dioxide 3reduction"" "subject:"carbon dioxide coeduction""
11 |
Réduction électrochimique du dioxyde de carbone sur des électrocatalyseurs à base de cuivre / Electrocatalytic reduction of carbon dioxide on copper-based catalystsSahin, Nihat Ege 08 December 2016 (has links)
Le réchauffement climatique est dû principalement à l'émission anthropique du dioxyde de carbone (CO2) dans l'atmosphère. Une réduction électrocatalytique et sélective de cette molécule a été proposée au cours de ce projet comme une solution prometteuse pour synthétiser des produits à valeur ajoutée. Une telle réaction requiert l'utilisation de matériaux efficaces et bas coût. Pour ce faire, les travaux de cette thèse ont porté sur la préparation de catalyseurs à base de cuivre dispersés sur différents substrats carbonés tels que le Vulcan XC-72R, les carbones mésoporeux CMK-3 et FDU-15, et des tanins à base d'IS2M pour réduire le CO2 en milieu aqueux. Les matériaux d'électrode ont été préparés à l'aide de la méthode polyol assistée par micro-ondes. Leurs caractérisations physiques et l'analyse élémentaire confirment des compositions atomiques et des taux de charge métallique proches de celles théoriquement envisagées. L'acide formique et le monoxyde de carbone sont les deux produits carbonés issus de la réduction du CO2 (2 bar) réalisée par chronoampérométrie en milieu NaHCO3. La détection et l'identification des produits de réaction ont été effectuées par des méthodes chromatographiques (µ-GC et HPLC), spectrométrique (DEMS) et spectroscopique (RMN). Une sélectivité de la réaction vis-à-vis de HCOOH (62 %) a été obtenue sur une cathode de Cu50Pd50/C. Cette conversion sélective du CO2 en HCOOH s'explique par une conjugaison d'effets électroniques et géométriques dans la structure de surface du catalyseur bimétallique et aussi celui de la texture du substrat carboné. / The anthropogenic emissions of carbon dioxide (CO2) are the major cause of global warming. The selective CO2 reduction reaction (CO2RR) of has been proposed as a promising, convenient and efficient method for sustainable energy conversion systems. The reduction of CO2 to energetically valuable products requires the use of an appropriate electrode material. This study focuses on the preparation of Cu-based electrocatalysts supported on different types of carbon materials such as Vulcan XC-72R, mesoporous carbon CMK-3, mesoporous carbon FDU-15 and tannin based mesoporous carbon IS2M for the CO2RR under mild conditions. Besides, Vulcan XC-72R carbon supported bimetallic copper/palladium alloy materials were prepared for increasing the Faradaic yield. These copper-based catalysts were electrochemically characterized and preparative electrolyses set at constant potential were carried out in order to investigate the reduction products distribution and Faradaic yields as a function of the applied potential and catalyst loading. Chemicals such as HCOOH, CO and H2 issued from the CO2RR, were determined with in-situ and ex-situ complementary (electro)analytical and spectroscopic techniques. The significant difference in the product distribution is probably due to the ensemble (geometry and ligand) effects in the bimetallic CuPd materials, and textural structure of the supporting substrates. Selective CO2 to-HCOOH conversion has been successfully undertaken on Cu50Pd50/C with 62 % Faradaic efficiency.
|
12 |
Investigations of E-H bond activation processes involving aluminium and galliumAbdalla, Joseph January 2015 (has links)
This thesis examines the interaction of hydrides of the group 13 metals aluminium and gallium with transition metal centres. Furthermore, a gallium-based system is developed which activates a wide range of E-H bonds, with the product of H<sub>2</sub> activation found to act as a catalyst for the reduction of CO<sub>2</sub> to a methanol derivative. Chapter 3 details the synthesis of a number of alane and gallane adducts of expanded-ring N-heterocyclic carbene (NHC) ligands, which are more strongly Ï-donating and sterically shielding analogues of classical NHCs. These NHC adducts are found to be apposite for the formation of Ï-alane and Ï-gallane complexes at group 6 metal carbonyl fragments, which has allowed the characterisation of the first κ<sup>2</sup> Ï-gallane complexes. The attempted formation of a terminally coordinated κ<sup>3</sup> Ï-alane complex leads instead to the isolation of a novel dinuclear cluster featuring both μ:κ<sup>1</sup>,κ<sup>1</sup> and μ:κ<sup>2</sup>,κ<sup>2</sup> coordination to Mo(CO)<sub>3</sub> units. The work presented in Chapter 4 probes the interaction of the β-diketiminate stabilised gallane Dipp<sub>2</sub>NacNacGaH<sub>2</sub> with transition metal carbonyls. Far from simply mimicking the chemistry of the alane congener Dipp<sub>2</sub>NacNacAlH<sub>2</sub>, which forms simple κ<sup>1</sup> and κ<sup>2</sup> Ï-alane complexes, the gallane shows a marked propensity towards dehydrogenation and formation of direct M-Ga(I) bonds. This represents a rare mode of reactivity among group 13 hydrides, being unprecedented beyond boron chemistry, and provides a new route to M-Ga bond formation. Experimental and computational investigations of the mechanism suggest that initial Ga-H oxidative addition is facile, and is generally followed by rate-limiting loss of H<sub>2</sub>. The reaction of Dipp2NacNacAlH2 with Co<sub>2</sub>(CO)<sub>2</sub> is shown to yield an unusual alane complex which displays an unprecedented degree of Al-H activation in a Ï-alane complex. Chapter 5 represents an extension of the work described in Chapter 5, investigating the interaction of Dipp<sub>2</sub>NacNacMH<sub>2</sub> (M = Al, Ga) with cationic group 9 transition metal fragments supported by ancillary phosphine ligands. While attempts to isolate unsupported, cationic Ï-alane complexes prove unsuccessful, Dipp<sub>2</sub>NacNacGaH<sub>2</sub> readily binds to cationic rhodium and iridium centres, forming the first cationic Ï-gallane complexes as well as cationic gallylene complexes resulting from complete Ga-H oxidative addition. The extent of Ga-H bond activation is shown to be markedly dependent on the nature of the phosphine co-ligands. In particular, a series of rhodium complexes is reported which represents snapshots of the oxidative addition process, from a Rh(I) Ï-gallane complex to a Rh(III) gallylene dihydride, with two further complexes which are on the cusp of these two oxidation states. Described in Chapter 6 are the synthesis and reactivity studies of an ambiphilic system, Dipp<sub>2</sub>NacNacâ²Ga(<sup>t</sup>Bu), featuring a three-coordinate gallium centre supported by a deprotonated NacNac ligand. The combination of this electrophilic gallium centre with the highly nucleophilic exocyclic alkene functionality facilitates the cooperative activation of protic, hydridic and apolar E-H bonds. Accordingly, molecules including H<sub>2</sub>, NH<sub>3</sub>, H<sub>2</sub>S and SiH4 may be cleaved under mild conditions. Moreover, the hydride product of H<sub>2</sub> activation is shown to be a competent catalyst in conjunction with HBpin for the reduction of CO<sub>2</sub> to the methanol derivative MeOBpin.
|
13 |
Rock cavern as thermal energy storageBerglund, Simon January 2020 (has links)
In the fall of 2019, a comprehensive idea study was conducted on heat storage in two rock caverns located at Näsudden in Skelleftehamn and was part of the project course "Energiteknik, huvudkurs" at Luleå University of Technology. This idea study investigated the conditions of using waste heat from Boliden AB:s copper smeltery (Rönnskär) and storing this waste heat in two rock caverns and use them as seasonal thermal storage tanks, with the purpose of using the heat in the nearby district heating network, thus replacing some of the oil burned at Rönnskär. To investigate this, the authors of the idea study looked at two different storage cycles of seasonal storage and modeled this in ANSYS Fluent to simulate the heat storage and the heat losses. The results from this idea study showed promising results for using these caverns as heat storage and this work is therefore a continuation of the idea study. Since the study provided a good understanding of the conditions for seasonal storage, some questions arose about how the rock caverns will behave during an intermittent operation, which is the planned mode of operating the caverns in case of deployment. In this thesis, intermittent operation of these caverns are explored and how this effects the temperature in the caverns and its surrondings, the charge/discharge speed, how insulated walls affect the operation and how much oil is replaced. At the beginning of this project a review of the idea study and similar projects was done to gain deeper knowledge about the subject, but also to get a wider grasp on the different problems that could arise during the thesis. Relevant data for the caverns was collected and acquired to get a deeper understanding of its geometry, layout and what kind of modifications are really possible. Further data from the district heating networks of Boliden AB and Skellefteå Kraft was acquired. The available waste heat from Rönnskär was examined and used to calculate the chargeable energy by hour for the caverns, with the limits of Skelleftehamn district heating network in mind. By examining the different steam boiler patterns, the discharge pattern could be calculated. Using CFD, the unknown global heat transfer coefficient between the cavern water and the cavern wall can be determined. This data was then used with a set of differential equations to model the behavior of the caverns in Simulink. This allowed to determine the behavior for the caverns during normal operation, such as how the heat losses evolve, how the temperatures fluctuate, how much heat the caverns can be charged with and how much they can discharge. The results from the simulations showed that the caverns discharge a higher amount of energy when operating intermittently than when operating seasonally. Depending on how the caverns are utilized, different amounts of discharged energy are obtained. This range from 2224,7MWh to 7846,1MWh for the different discharging patterns. The usage also affects the efficiency of the cavern giving the efficiency a range between 19% to 53,9%. The heat losses range from around 20kW to 1000kW, depending on operation. Insulating the cavern walls reduces on average the heat losses by a factor of 5. Operating the caverns intermittently would on average remove a total of 29 ktonne CO2 and 88,74 tonne NOx for its expected lifespan of 30 years. Economically, the rock caverns have good economic potential as they would save about 80 million SEK during their lifetime just from buying less oil. / Hösten 2019 genomfördes en omfattande idéstudie om värmelagring i två bergrum vid Näsudden i Skelleftehamn och var en del av projektkursen "\textit {Energiteknik, huvudkurs}" vid Luleå tekniska universitet. Denna idéstudie undersökte villkoren för att använda spillvärme från Boliden AB:s kopparsmältverk (Rönnskär) och lagra denna värme i bergrummen och använda dem som säsongslagrade ackumulatortankar. Syftet med detta var att använda värmen i det närliggande fjärrvärmenätverket och därmed ersätta en del av den förbrända oljan hos Rönnskär. Författarna utforskade detta genom att undersöka två olika lagringscykler för säsongslagring och modellerade detta i ANSYS Fluent för att simulera värmelagring och värmeförluster. Resultaten från idéstudien visade lovande resultat för säsongsbaserad värmelagring i dessa bergrum och detta arbete är därför en fortsättning av idéstudien. Eftersom studien gav en god förståelse för förhållandena för säsongslagring, uppstod några frågor om hur bergrummen kommer att bete sig under en intermittent drift, vilket är den planerade driften av bergrummen vid en framtida användning. I detta projekt undersöks intermittent drift av dessa bergrum och hur detta påverkar temperaturen i bergrummen och dess omgivning, laddnings- / urladdningshastigheten, hur isolerade väggar påverkar driften och hur oljeförbrukningen reduceras. I början av detta projekt gjordes en genomgång av idéstudien och liknande projekt för att få djupare kunskap om ämnet, men också för att få ett bredare grepp om de olika problem som kan uppstå under arbetets gång. Relevant data för bergrummen samlades in och anskaffades för att få en djupare förståelse för dess geometri, layout och vilken typ av ändringar som verkligen är möjliga. Ytterligare data från fjärrvärmenätverket för Boliden AB och Skellefteå Kraft förvärvades. Den tillgängliga spillvärme från Rönnskär undersöktes och användes för att beräkna den urladdningsbara energin per timme för bergrummen, med begränsningarna i Skelleftehamns fjärrvärmenät i åtanke. Genom att undersöka de olika ångpannmönstren kan urladdningsmönstret beräknas. Med hjälp av CFD kan den okända globala värmeöverföringskoefficienten mellan bergrumsvattnet och bergväggen bestämmas. Denna data användes sedan med en uppsättning differentialekvationer för att modellera driften av bergrummen i Simulink. Detta gjorde det möjligt att bestämma beteendet för bergrummen under normal drift, till exempel hur värmeförlusterna utvecklas, hur temperaturen fluktuerar, hur mycket värme bergrummen kan laddas med och hur mycket de kan ladda ur. Resultaten från simuleringarna visade att bergrummen kan ladda ur en större mängd energi än vid en säsongsbetonad drift. Beroende på hur grottorna utnyttjas erhålls olika mängder urladdad energi. Detta sträcker sig från 2224,7MWh till 7846,1MWh för de olika urladdningsmönstren. Användningen påverkar också grottans effektivitet vilket ger en effektivitet mellan 19% och 53,9%. Värmeförlusterna sträcker sig från cirka 1000 kW till 20kw, beroende på drift. Isolering av bergväggarna minskar i genomsnitt värmeförlusten med en faktor 5. Att använda grottorna intermittent skulle i genomsnitt ersätta totalt 29 kton CO2 och 88,74 ton NOx för den förväntade livslängden på 30 år. Bergrummen har även god ekonomisk potential eftersom de skulle spara cirka 80 miljoner SEK under sin livstid bara från minskade oljekostnader.
|
14 |
Photo-dissociation de l'eau et photo-réduction du CO₂ assistées par co-catalyse moléculaire / Photo-electrochemical reduction of Water and Carbon Dioxide enhanced by molecular catalysisVillagra, Angel Eduardo 28 September 2016 (has links)
L’objectif principal de ce travail de thèse était de mettre en évidence et de mesurer l’effet co-catalytique de complexes moléculaires organo-métalliques à base de métaux de transition adsorbés sur des semi-conducteurs dopés photo-actifs vis-à-vis des réactions de photo-dissociation de l’eau et de photo-réduction du dioxyde de carbone, en en vue d’applications dans des cellules photochimiques et photo-électrochimiques. Nous avons tout d’abord identifié et sélectionné les matériaux (deux semi-conducteurs photo-actifs et deux co-catalyseurs moléculaires électroactifs) les plus adaptés (les résultats sont présentés dans le chapitre I). Nous avons ensuite conçu, développé et mis au point un bâti expérimental permettant la détection et le dosage en continu des produits de réaction lors des réactions d’intérêt (les résultats sont présentés dans le chapitre II). La détection des produits de réaction se fait à l’aide d’un chromatographe en phase gazeuse couplé au réacteur. Nous avons ensuite élaboré/synthétisé et mesuré les propriétés intrinsèques des matériaux sélectionnés (les résultats sont présentés dans le chapitre III). Finalement, nous avons mis en évidence l’activité co-catalytique des complexes utilisés et mesuré un ensemble d’indicateurs de performance tels que les cinétiques de réaction et les fréquences de « turn-over » (les résultats sont présentés dans le chapitre IV). / The main objective of this research work was to put into evidence the co-catalytic effect of organo-metallic molecular complexes containing transition metals as reactive centers, adsorbed at the surface of doped semiconductors with photo-activity with regard to water photo-dissociation and carbon dioxide photo-reduction, in view of practical applications in photochemistry and photo-electrochemistry. First, appropriate materials (two photoactive semiconductors and two molecular co-catalysts) have been identified and selected (results are presented in chapter I). Then, we have designed, constructed and optimized a specific test bench that can be used for the continuous detection and titration of reaction products (results are presented in chapter II). Product analysis was achieved by coupling a gas-phase chromatograph to the photo-electrochemical reactor. Then, photoactive semiconductors and molecular co-catalysts have been elaborated/synthesized and their intrinsic properties have been measured (results are presented in chapter III). Finally, the co-catalytic activity of molecular complexes has been put into evidence and several performance indicators such as reaction kinetics and turn-over frequency have been measured (results are presented in chapter IV).
|
15 |
Studies of Electrified Interfaces using Vibrational Sum Frequency GenerationWallentine, Spencer K. January 2021 (has links)
No description available.
|
16 |
Carbon Dioxide Reduction on Gadolinia-Doped Ceria CathodesGreen, Robert David 22 January 2009 (has links)
No description available.
|
17 |
Boosting Electrochemical Carbon Dioxide Reduction on Atomically Dispersed Nickel CatalystHao, Qi, Liu, Dong-Xue, Deng, Ruiping, Zhong, Hai-Xia 16 May 2024 (has links)
Single-atom catalysts (SACs) with metal–nitrogen (M–N) sites are one of the most promising electrocatalysts for electrochemical carbon dioxide reduction (ECO₂R). However, challenges in simultaneously enhancing the activity and selectivity greatly limit the efficiency of ECO₂R due to the improper interaction of reactants/intermediates on these catalytic sites. Herein, we report a carbon-based nickel (Ni) cluster catalyst containing both single-atom and cluster sites (NiNx-T, T = 500–800) through a ligandmediated method and realize a highly active and selective electrocatalytic CO₂R process. The catalytic performance can be regulated by the dispersion of Ni–N species via controlling the pyrolysis condition. Benefitting from the synergistic effect of pyrrolicnitrogen coordinated Ni single-atom and cluster sites, NiNx-600 exhibits a satisfying catalytic performance, including a high partial current density of 61.85 mA cm⁻² and a high turnover frequency (TOF) of 7,291 h⁻¹ at −1.2 V vs. RHE, and almost 100% selectivity toward carbon monoxide (CO) production, as well as good stability under 10 h of continuous electrolysis. This work discloses the significant role of regulating the coordination environment of the transition metal sites and the synergistic effect between the isolated single-site and cluster site in enhancing the ECO₂R performance.
|
Page generated in 0.1062 seconds