• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EMERGING COMPUTING BASED NOVEL SOLUTIONS FOR DESIGN OF LOW POWER CIRCUITS

Mohammad, Azhar 01 January 2018 (has links)
The growing applications for IoT devices have caused an increase in the study of low power consuming circuit design to meet the requirement of devices to operate for various months without external power supply. Scaling down the conventional CMOS causes various complications to design due to CMOS properties, therefore various non-conventional CMOS design techniques are being proposed that overcome the limitations. This thesis focuses on some of those emerging and novel low power design technique namely Adiabatic logic and low power devices like Magnetic Tunnel Junction (MTJ) and Carbon Nanotube Field Effect transistor (CNFET). Circuits that are used for large computations (multipliers, encryption engines) that amount to maximum part of power consumption in a whole chip are designed using these novel low power techniques.
2

Development of Carbon Nanotube-based Field-Effect Transistors for Analog High-Frequency Applications

Hartmann, Martin 04 January 2023 (has links)
The carbon nanotube-based field effect transistor (CNTFET) possesses the potential to overcome limitations of state-of-the-art technologies such as silicon-based complementary metal-oxide-semiconductors. However, the carbon nanotube (CNT) technology is still at its infancy and technology development is still necessary to exploit the CNT properties such as high charge carrier mobility, high current carrying capability, one-dimensional charge transport and their versatile integrability. Within this work significant progress has been achieved scientifically and technologically in the advance of high frequency (HF) CNTFETs for analog applications. According to simulations by others, a technology flow has been developed based on electron beam lithography for bottom gated HF CNTFETs which outperform state-of the art top gate architectures with respect to their parasitic capacitances. Moreover, the impact of electrostatic doping on the CNTFETs has been investigated. In particular, the dynamics of water desorption from the CNTFETs and the related reduction of p-type doping was investigated and the different impact of the n-type dopant polyethylenimine onto the channel region and contact region could be separated for the first time. Furthermore, the impact of doped CNT bundles on the device performance has been studied. It could be shown in detail for the first time, that high off-state source-drain leakage currents can be due to bundled semiconducting CNTs and does not necessarily imply the presence of metallic CNTs. The within the framework of this thesis designed and realized HF CNTFETs are operating in the GHz range with cut-off frequencies up to 14 GHz and maximum frequencies of oscillation up to 6 GHz at a channel length of 280 nm. Moreover, the impact of the spacer between the source-/ drain- to the gate electrode on the HF properties of the CNTFETs has been investigated experimentally for the first time. Simulations by others have successfully confirmed that a symmetrical reduction of the source to gate electrode spacer results in an increased device speed. By asymmetrically reducing the source to gate electrode spacer and in parallel increasing the drain-to-gate electrode spacer the device speed can be further enhanced. Moreover, within this work it has been experimentally indicated for the first time that the device properties of HF CNTFETs can be tuned by different device geometries towards either highest linearity or speed.
3

Improvement of carbon nanotube-based field-effect transistors by cleaning and passivation

Tittmann-Otto, Jana 16 October 2020 (has links)
Ever since their discovery in 1991, carbon nanotubes are of great interest to the scientific community due to their outstanding optical, mechanical and electrical properties. Considering their impressive properties, as for instance the high current carrying capability and the possibility of ballistic charge transport, carbon nanotubes are a desired channel material in field-effect transistors, especially with respect to high frequency communication electronics. Thus, many scientific studies on CNT-based field-effect transistors have been published so far. But despite the successful verification of excellent individual electric key values, corresponding experiments are mostly performed under synthetic conditions (considering e.g. temperature or gas atmosphere), which are not realizable during realistic application scenarios. Furthermore, technologically relevant factors like homogeneity, reproducibility and yield of functioning devices are often subordinated to the achievement of a single electric record value. Hence, this work focuses on the development of a fabrication technology for carbon nanotube field-effect transistors, that takes those factors into account. Thereby, this work expands the state of the art by introduction and statistical assessment of two cleaning processes: a) wet chemical removal of surfactant residues (sodium dodecylsulfate) from CNTs, integrated using the dielectrophoretic approach, by investigation and comparison of four procedures (de-ionized water, HNO3, oDCB, Ethanol); b) the reduction of process-related substrate contaminations by application of an oxygen plasma. Beyond that, the passivation of the final, working devices is developed further, as their typical definition as diffusion barrier is expanded by the reduction of parasitic capacitances in the transistor. In this context, two so far barely considered materials, hydrogen silsesquioxane and Xdi-dcs, a polymer mixture of poly(vinylphenol) and polymethylsilsesquioxane, are investigated and assessed. The novelty of the Xdi-dcs mixture causes the necessity of fundamental considerations on controllable etching procedures and resulting adaptions of the technological fabrication sequence.:Bibliographic description 3 List of abbreviations 10 List of symbols 10 1 Introduction 13 2 Basics of carbon nanotubes 15 2.1 Structural fundamentals 15 2.1.1 Hybridization of carbon 15 2.1.2 Structure of carbon nanotubes 17 2.2 Electronic properties 19 2.2.1 Band structure of graphene 19 2.2.2 Band structure of carbon nanotubes 20 2.2.3 Electronic transport in CNTs 22 2.3 Procedures for CNT integration 23 2.3.1 Growth by chemical vapor deposition 24 2.3.2 Transfer techniques 24 2.3.3 Dispersion-related integration procedures 25 2.4 Interaction of CNT and surfactant 28 3 Basics of CNT field-effect transistors 31 3.1 Principle of operation of conventional FETs 31 3.2 Distinctive features of CNT-based FETs 32 3.2.1 Metal - semiconductor contact 33 3.2.2 Linearity 38 3.3 Performance determining factors 41 3.3.1 Device architecture 41 3.3.2 Contact geometry 46 3.3.3 Other transistor dimensions 48 3.3.4 CNT-related characteristics 49 3.4 Hysteresis in transfer characteristics 51 3.4.1 Definition of hysteresis 51 3.4.2 Origins of hysteresis 52 3.4.3 Appearance of hysteresis 53 3.5 Passivation 56 3.5.1 Requirements 56 3.5.2 Importance of pre-treatments and process conditions 57 3.5.3 Overview of established passivation materials 58 4 Experimental work 63 4.1 Transistor design 63 4.2 Technology flow 66 4.3 Experimental procedures 71 4.3.1 Procedures for dissolution of SDS 71 4.3.2 Plasma treatment against surface contaminations 72 4.3.3 Evaluation of diffusion barriers 72 4.4 Instrumentation and characterization 74 4.4.1 Dielectrophoresis instrumentation 74 4.4.2 Topographical Characterization 74 4.4.3 Chemical characterization 75 4.4.4 Electrical characterization 76 5 Reduction of hysteresis 77 5.1 Removal of surfactant molecules from CNTs 77 5.1.1 Influence on molecule and CNT chemistry 78 5.1.2 Effect on transistor performance 80 5.2 Plasma-assisted removal of substrate contaminations 87 5.2.1 Influence on substrate surface 88 5.2.2 Effect on transistor performance 92 6 Passivation 97 6.1 Protection against environmental effects 97 6.1.1 Alterability of unpassivated CNT-FETs 98 6.1.2 Effects of O2 exclusion by dense passivation 99 6.1.3 Intentional doping using Y2O3 101 6.2 Passivation considering electrostatic aspects 106 6.2.1 Integration of Xdi-dcs as novel passivation 107 6.2.2 Comparison of two spin-coated dielectrics 111 6.3 Potential of double-layer approaches 113 6.3.1 Evaluation of the gas barrier performance 113 6.3.2 Influence on the transistor behavior 116 7 Summary and Outlook 121 Danksagung 127 Appendix 129 Bibliography 137 List of figures 156 List of tables 161 Selbstständigkeitserklärung 163 8 Thesen 165 9 Curriculum vitae 169 / Bereits seit ihrer Entdeckung 1991 sind Kohlenstoffnanoröhren, aufgrund ihrer herausragenden optischen, mechanischen und elektrischen Eigenschaften, für die wissenschaftliche Community von großem Interesse. Ihre Verwendung als Kanalmaterial in Feld-Effekt Transistoren ist in Anbetracht ihrer außergewöhnlichen Eigenschaften, wie z. B. die hohe Stromtragfähigkeit, sowie die Möglichkeit des ballistischen Transports von Ladungsträgern besonders für die hochfrequente Kommunikationselektronik erstrebenswert. Dementsprechend viele wissenschaftliche Arbeiten befassen sich mit der Erforschung von auf Kohlenstoffnanoröhren basierenden Transistoren. Doch trotz des erfolgreichen Nachweises ausgezeichneter Werte für viele individuelle elektrische Kenngrößen, finden entsprechenden Experimente zumeist unter anwendungsfernen Bedingungen bezüglich Temperatur bzw. Gasatmosphäre statt. Darüber hinaus werden dem Erreichen eines elektrischen Rekordwertes oft technologisch relevante Größen wie Homogenität, Reproduzierbarkeit und Ausbeute an funktionsfähigen Bauteilen untergeordnet. Der Fokus dieser Arbeit liegt daher auf der Erarbeitung einer Technologie zur Herstellung Kohlenstoffnanoröhrenbasierter Feld-Effekt Transistoren, unter Berücksichtigung dieser Aspekte. Dabei erweitert diese Arbeit den Stand der Technik durch die Einführung und statistische Beurteilung zweier Reinigungsprozesse: a) der nasschemischen Beseitigung von Tensidresten (Natriumdodecylsulfat) an mittels Dielektrophorese integrierten CNTs, wobei insgesamt vier Prozeduren (de-ionisiertes Wasser, HNO3, oDCB, Ethanol) betrachtet und miteinander verglichen wurden; b) der Beseitigung von prozessbedingten Substratkontaminationen durch ein Sauerstoffplasma. Darüber hinaus wird die Passivierung der funktionsfähigen Bauelemente weiterentwickelt, indem ihre typische Definition als Diffusionsbarriere um den Aspekt der Verringerung parasitärer Kapazitäten im Transistor erweitert wird. In diesem Zusammenhang werden mit Wasserstoff-Silsesquioxane und Xdi-dcs, einem Polymergemisch aus Poly(vinylphenol) und Polymethylsilsesquioxane, zwei bislang wenig beachtete Materialien, untersucht und bewertet. Die Neuheit des Xdi-dcs Gemisches macht dabei fundamentale Untersuchungen zur Strukturierbarkeit und entsprechende technologische Anpassungen im Gesamtablauf nötig.:Bibliographic description 3 List of abbreviations 10 List of symbols 10 1 Introduction 13 2 Basics of carbon nanotubes 15 2.1 Structural fundamentals 15 2.1.1 Hybridization of carbon 15 2.1.2 Structure of carbon nanotubes 17 2.2 Electronic properties 19 2.2.1 Band structure of graphene 19 2.2.2 Band structure of carbon nanotubes 20 2.2.3 Electronic transport in CNTs 22 2.3 Procedures for CNT integration 23 2.3.1 Growth by chemical vapor deposition 24 2.3.2 Transfer techniques 24 2.3.3 Dispersion-related integration procedures 25 2.4 Interaction of CNT and surfactant 28 3 Basics of CNT field-effect transistors 31 3.1 Principle of operation of conventional FETs 31 3.2 Distinctive features of CNT-based FETs 32 3.2.1 Metal - semiconductor contact 33 3.2.2 Linearity 38 3.3 Performance determining factors 41 3.3.1 Device architecture 41 3.3.2 Contact geometry 46 3.3.3 Other transistor dimensions 48 3.3.4 CNT-related characteristics 49 3.4 Hysteresis in transfer characteristics 51 3.4.1 Definition of hysteresis 51 3.4.2 Origins of hysteresis 52 3.4.3 Appearance of hysteresis 53 3.5 Passivation 56 3.5.1 Requirements 56 3.5.2 Importance of pre-treatments and process conditions 57 3.5.3 Overview of established passivation materials 58 4 Experimental work 63 4.1 Transistor design 63 4.2 Technology flow 66 4.3 Experimental procedures 71 4.3.1 Procedures for dissolution of SDS 71 4.3.2 Plasma treatment against surface contaminations 72 4.3.3 Evaluation of diffusion barriers 72 4.4 Instrumentation and characterization 74 4.4.1 Dielectrophoresis instrumentation 74 4.4.2 Topographical Characterization 74 4.4.3 Chemical characterization 75 4.4.4 Electrical characterization 76 5 Reduction of hysteresis 77 5.1 Removal of surfactant molecules from CNTs 77 5.1.1 Influence on molecule and CNT chemistry 78 5.1.2 Effect on transistor performance 80 5.2 Plasma-assisted removal of substrate contaminations 87 5.2.1 Influence on substrate surface 88 5.2.2 Effect on transistor performance 92 6 Passivation 97 6.1 Protection against environmental effects 97 6.1.1 Alterability of unpassivated CNT-FETs 98 6.1.2 Effects of O2 exclusion by dense passivation 99 6.1.3 Intentional doping using Y2O3 101 6.2 Passivation considering electrostatic aspects 106 6.2.1 Integration of Xdi-dcs as novel passivation 107 6.2.2 Comparison of two spin-coated dielectrics 111 6.3 Potential of double-layer approaches 113 6.3.1 Evaluation of the gas barrier performance 113 6.3.2 Influence on the transistor behavior 116 7 Summary and Outlook 121 Danksagung 127 Appendix 129 Bibliography 137 List of figures 156 List of tables 161 Selbstständigkeitserklärung 163 8 Thesen 165 9 Curriculum vitae 169

Page generated in 0.1063 seconds