• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 11
  • 10
  • 10
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 248
  • 248
  • 106
  • 83
  • 56
  • 56
  • 55
  • 53
  • 49
  • 35
  • 27
  • 26
  • 26
  • 25
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Design and optimization of energy systems with effective carbon control

Gharaie, Mona January 2013 (has links)
Environmental concerns about the effect of greenhouse gases have led governments to regulate industrial CO2 emissions, including through emissions caps, trading and penalties, thus creating economic incentives to reduce CO2 emissions. This research focuses on strategies to reduce CO2 emissions from energy systems in the context of the process industries. In the process industries, energy systems consume fuel to generate steam and power for site process units. Improving energy efficiency can reduce costs of energy generation and use, as well as CO2 emissions. This research develops an integrated design and optimisation methodology for energy systems, allowing effective capture and control of carbon dioxide emissions. The first focus of this study is to develop a systematic approach to evaluate combinatorial strategies for reducing CO2 emissions, based on a techno-economic analysis. A conceptual design procedure with hierarchical decision-making is introduced to combine CO2 emissions reduction strategies, accounting for interactions between site components, including the heat exchanger network and utility system. CO2 emissions reduction options considered in development of this procedure include process integration techniques for improving the energy efficiency of the site and fuel switching. The proposed approach considers trade-offs between the economy of energy retrofit and CO2 emissions penalties. Opportunity for reducing the CO2 penalty is included in the economic evaluation of the combined emissions reduction strategies. A mathematical model for simultaneous optimization of emissions reduction strategies is developed. In addition to emissions reduction strategies, options for trading CO2 allowances are considered in the model. The proposed mathematical method applies Mixed Integer Non Linear Programming (MINLP) optimization, which employs a superstructure of the strategies for CO2 reduction. The proposed mathematical model relates the selected options to their operating and capital costs and to their associated CO2 emissions, allowing the optimizer to search for the optimal combination of emissions reduction strategies. While the reduction in CO2 emissions through process integration techniques is based on the existing configuration of a site and the associated structural limitations, integration of Carbon Capture and Storage (CCS) technologies can provide greater mitigation of CO2 emissions from a site. However, important challenges of implementing CCS in the process industries are the energetic and economic impact of the CCS plant on the integrated site. In the second part of this study, these energy-economic issues are explored. The CCS technologies addressed in this thesis include post- and pre-combustion CO2 capture techniques. Simulation of each capture technique is carried out in process simulation software to characterize the energy performance of the CO2 capture plant. Sensitivity analyses are carried out for key parameters of the CO2 capture plant. The relationship between these key parameters and the energy balance of the capture plant is represented using a simple energy performance model for the CO2 capture plant. This model allows the integration of the CO2 capture plant with the site utility system to be explored. Interactions between the utility system and CO2 capture plant are considered. The site utility system, together with the CO2 capture plant, is optimized for minimum operating cost. The proposed procedures are illustrated by application to a case study of a medium-scale oil refinery. The results illustrate that to reduce CO2 emissions, heat integration, utility system optimization and fuel switching provide more cost-effective solutions than integrating CCS technologies. The mathematical model allows more cost-effective solutions to be identified than using sequential, conceptual methods, but the value of the conceptual method for developing insights is also illustrated. The results demonstrate that, depending on the potential of the site for increasing heat recovery and the type of fuel used on site, solutions that combine energy efficiency and fuel switching can provide up to 40% reduction in site CO2 emissions. Integrating a post-combustion CO2 capture plant with the site utility system can provide up to 90 mol% pure CO2 for sequestration; however, the high capital cost of the capture plant reduces the economic performance of the integrated site. The high heat demand of post-combustion CO2 capture for solvent regeneration increases the fuel consumption of the site and its utility system, which in turn reduces the recovery of CO2. The results reveal that pre-combustion CO2 capture can provide opportunities for heat and power generation to improve the techno-economic performance of the overall integrated site.
42

Experimental and Simulation Study on Novel Adsorbents for Carbon Capture, Oxygen Sorption, and Methane Recovery

January 2020 (has links)
abstract: Global warming resulted from greenhouse gases emission has received widespread attention. Meanwhile, it is required to explore renewable and environmentally friendly energy sources due to the severe pollution of the environment caused by fossil fuel combustion. In order to realize a substantial adsorption process to resolve the environmental issues, the development of new adsorbents with improved properties has become the most critical issue. This dissertation presents the work of four individual but related studies on systematic characterization and process simulations of novel adsorbents with superior adsorption properties. A perovskite oxide material, La0.1Sr0.9Co0.9Fe0.1O3-δ (LSCF1991), was investigated first for high-temperature air separation. The oxygen sorption/desorption behavior of LSCF1991 was studied by thermogravimetric analysis (TGA) and fixed-bed breakthrough experiments. A parametric study was performed to design and optimize the operating parameters of the high-temperature air separation process by pressure swing adsorption (PSA). The results have shown great potential for applying LSCF1991 to the high-temperature air separation due to its excellent separation performance and low energy requirement. Research on using nanostructured zeolite NaX (NZ) as adsorbents for CO2 capture was subsequently conducted. The CO2/N2 adsorption characterizations indicated that the NZ samples lead to enhanced adsorption properties compared with the commercial zeolites (MZ). From the two-bed six-step PSA simulation, NZ saved around 30% energy over MZ for CO2 capture and recovery while achieving a higher CO2 purity and productivity. A unique screening method was developed for efficient evaluation of adsorbents for PSA processes. In the case study, 47 novel adsorbents have been screened for coal bed methane (CBM) recovery. The adsorbents went through scoring-based prescreening, PSA simulation, and optimization. The process performance indicators were correlated with the adsorption selectivity and capacities, which provides new insights for predicting the PSA performance. A new medium-temperature oxygen sorbent, YBaCo4O7+δ (YBC114), was investigated as an oxygen pumping material to facilitate solar thermochemical fuel production. The oxygen uptake and release attributes of YBC114 were studied by both TGA and a small-scale evacuation test. The study proved that the particle size has a significant effect on the oxygen pumping behavior of YBC114, especially for the uptake kinetics. / Dissertation/Thesis / Doctoral Dissertation Chemical Engineering 2020
43

Development of Electro-Microbial Carbon Capture and Conversion Systems

Al Rowaihi, Israa 05 1900 (has links)
Carbon dioxide is a viable resource, if used as a raw material for bioprocessing. It is abundant and can be collected as a byproduct from industrial processes. Globally, photosynthetic organisms utilize around 6’000 TW (terawatt) of solar energy to fix ca. 800 Gt (gigaton) of CO2 in the planets largest carbon-capture process. Photosynthesis combines light harvesting, charge separation, catalytic water splitting, generation of reduction equivalents (NADH), energy (ATP) production and CO2 fixation into one highly interconnected and regulated process. While this simplicity makes photosynthetic production of commodity interesting, yet photosynthesis suffers from low energy efficiency, which translates in an extensive footprint for solar biofuels production conditions that store < 2% of solar energy. Electron transfer processes form the core of photosynthesis. At moderate light intensity, the electron transport chains reach maximum transfer rates and only work when photons are at appropriate wavelengths, rendering the process susceptible to oxidative damage, which leads to photo-inhibition and loss of efficiency. Based on our fundamental analysis of the specialized tasks in photosynthesis, we aimed to optimize the efficiency of these processes separately, then combine them in an artificial photosynthesis (AP) process that surpasses the low efficiency of natural photosynthesis. Therefore, by combining photovoltaic light harvesting with electrolytic water splitting or CO2 reduction in combination with microbiological conversion of electrochemical products to higher valuable compounds, we developed an electro-microbial carbon capture and conversion setups that capture CO2 into the targeted bioplastic; polyhydroxybutyrate (PHB). Based on the type of the electrochemical products, and the microorganism that either (i) convert products formed by electrochemical reduction of CO2, e.g. formate (using inorganic cathodes), or (ii) use electrochemically produced H2 to reduce CO2 into higher compounds (autotrophy), three AP setups were designed: one-pot, two-pot, and three-pot setups. We evaluated the kinetic (microbial uptake and conversion, electrochemical reduction) and thermodynamics (efficiencies) of the separate processes, and the overall process efficiency of AP compared to photosynthesis. We address the influence of several parameters on efficiencies and time-space yields, e.g. salinity, pH, electrodes, media, partial pressures of H2 and CO2. These data provide a valuable basis to establish a highly efficient and continuous AP process in the future.
44

Carbon Capture and Synergistic Energy Storage: Performance and Uncertainty Quantification

Russell, Christopher Stephen 27 February 2019 (has links)
Energy use around the world will rise in the coming decades. Renewable energy sources will help meet this demand, but renewable sources suffer from intermittency, uncontrollable power supply, geographic limitations, and other issues. Many of these issues can be mitigated by introducing energy storage technologies. These technologies facilitate load following and can effectively time-shift power. This analysis compares dedicated and synergistic energy storage technologies using energy efficiency as the primary metric. Energy storage will help renewable sources come to the grid, but fossil fuels still dominate energy sources for decades to come in nearly all projections. Carbon capture technologies can significantly reduce the negative environmental impact of these power plants. There are many carbon capture technologies under development. This analysis considers both the innovative and relatively new cryogenic carbon capture™ (CCC) process and more traditional solvent-based systems. The CCC process requires less energy than other leading technologies while simultaneously providing a means of energy storage for the power plant. This analysis shows CCC is effective as a means to capture CO2 from coal-fired power plants, natural-gas-fired power plants, and syngas production plants. Statistical analysis includes two carbon capture technologies and illustrates how uncertainty quantification (UQ) provides error bars for simulations. UQ provides information on data gaps, uncertainties for property models, and distributions for model predictions. In addition, UQ results provide a discrepancy function that can be introduced into the model to provide a better fit to data and better accuracy overall.
45

Algae Based Carbon Capture and Utilization feasibility study : - initial analysis of carbon capture effect based on Zhoushan case pre-study in China

Sen, Cong January 2012 (has links)
This pre-feasibility study was taken out by the co-operation with Zhejiang University, the CEU lab in Zhejiang University is taking researches of the algae based carbon dioxide capture technology, this report mainly aims to evaluate the GHG mitigation effect of this technology and give suggestions.   This study was carried out at Zhejiang University based on the Zhoushan islands waste incineration power plant project, the report presents the initial feasibility study for the algae based carbon capture and utilization technology focus on the carbon footprint and value summary . First the algae based CCU technology was introduced, then by using the life cycle assessment methodology and based on the description of the whole algae based carbon capture utilization process, each process unit was defined, concerning mass balance analysis was made for each unit, according to the mass balance analysis, carbon flow data was obtained for the whole process. In the discussion part, the carbon dioxide capture and avoid amount was analyzed, also the economic value summary for the material input and output was discussed. Concerning general suggestions for the further development and research about the project were given in five sectors: biotechnology, cultivation and harvesting, biomass utilization, substance and energy input, human resource.   The final conclusion is that the algae based carbon capture and utilization technology is not a carbon negative process, but could produce renewable fuels to avoid certain fossil fuels consumption. Lots of technical limitations exist in the study, it needs more work to applied this technology into reality for China. And the profit analysis based on the value summary for the project is optimistic without the consideration of the initial cost. The algae base CCU technology may become a useful alternative for the carbon abatement in China but not the best choice.
46

Facilitated Transport Membranes for Carbon Capture from Flue Gas and H2 Purification from Syngas: From Membrane Synthesis to Process Design

Han, Yang January 2018 (has links)
No description available.
47

Chemical Looping Partial Oxidation and Hydrogen Production: Process Simulation, Exergy Analysis and Life Cycle Assessment

Kong, Fanhe 12 October 2020 (has links)
No description available.
48

Thermo-Hydro-Mechanical Modeling of Induced Seismicity in Carbon Sequestration Projects

Mortezaei, Kimia 09 December 2016 (has links)
The ultimate goal of this project is to comprehensively investigate induced seismicity potential by studying the behavior of fault shear zones during high pressure CO2 injection for utilization and storage operations. Seismicity induced by fluid injection is one of the major concerns associated with recent energy technologies such as Carbon capture and storage (CCS) projects. CO2 injection increases reservoir pore pressure and decreases the effective stress causing deformation that can degrade the storage integrity by creating new fractures and reactivating faults. The first consequence is that reactivation of faults and fractures create a pathway for upward CO2 migration. The increased seismic activity is the second consequence, which raises the public concern despite the small magnitudes of such earthquakes. Changes in pore fluid pressure within the injection zone can induce low-magnitude seismic events. However, there are multiple involved Thermo-Hydro-Mechanical (THM) processes during and after fault slip that influences pore pressure and fault strength. Flash heating and thermal pressurization are two examples of such processes that can weaken the fault and decrease frictional resistance along the fault. The proposed study aims to use a multi-physics numerical simulation to analyze the fault shear zone mechanics and capture the involved THM processes during CO2 injection. In one study, a coupled THM model is performed to simulate stress and pore pressure changes in the fault and ultimately measuring the maximum induced magnitude. The other study investigates the response of the fault shear zone during CO2 injection with and without considering the thermal pressurization (TP) effect. In the third part, the realistic behavior of friction was studied by using a rate-and-state friction theory to capture the full earthquake rupture sequence. The outcome of the proposed project can significantly increase the efficiency and public acceptance of CCS technology by addressing the major concerns related to the induced seismicity due to CO2 injection.
49

Define optimum process conditions to produce CO2 adsorbents from pur materials

Pantzar, Daniel, Coates, Anton January 2022 (has links)
The Carbon Capture and Storage method has been acknowledged for the capabilities of reducing up to 20% CO2 emissions. Development of porous carbon materials prepared from polyurethane foam adsorbent were investigated for capture of CO2. In this thesis work, the carbon material was chemically activated through the direct and indirect methods. Pre-carbonization, mass ratio KOH/char, activation temperature, and activation time, the effect of the preparation conditions on the porous adsorbent were evaluated for the purpose of managing pore sizes and developing high adsorption capacity of CO2. During the direct method, polyurethane foam was directly treated with KOH before activation. Whereas during the indirect method, the foam was pre-carbonized to form char, which was treated instead. The indirectly and directly activated adsorbent prepared at optimum conditions show adsorption capacities of 152,10 and 151,29 mg/g at 1 atm and 25°C respectively. The produced adsorbents were evaluated for their CO2 separation performance with a thermogravimetric analyser with 100% CO2. The CO2 uptake and pore sizes were directly affected by the different parameters. A moderate activation time and temperature presented a higher adsorption capacity, where it decreased after reaching a higher time and temperature. A higher KOH/char mass ratio leads to a higher CO2 uptake, where it steadily increases from the lowest mass ratio.
50

Solid Circulation Rate and Gas Leakage of a Novel Internally Circulating Bubbling Fluidized Bed for Pressurized Chemical Looping

Alain, Amanda 13 July 2023 (has links)
To achieve net-zero emissions by the year 2050, carbon capture, utilization and storage technologies must be implemented to decarbonize sectors with hard-to-abate emissions. Pressurized chemical looping (PCL) with a novel reactor design called a plug flow with internal recirculation (PFIR) fluidized bed reactor is proposed as an attractive carbon capture technology to decarbonize small- and medium-scale emitters. The objective of this work was to examine solid circulation rate, gas leakage between reactors, and purge gas fate in a cold flow chemical looping facility. These parameters were used to better understand the PFIR reactor and will be used to validate a computational particle fluid dynamic (CPFD) model of the PFIR reactor to inform the reactor operation and design for a hot flow PCL pilot plant. An energy balance across the fuel reactor was used to determine the solid circulation rate of the bed material, while helium and argon tracer gases were used to determine the amount of gas leaking between reactor sections and the fate of the purge gas, respectively. Statistical analyses were completed to determine the statistical significance of the data. At the base case condition, the solid circulation rate was 3000 kg/h. Approximately 10% of the fluidizing gas that entered the air reactor moved to the fuel reactor indicating that, with reacting flow, there will be nitrogen infiltrating the fuel reactor, decreasing the purity of the carbon dioxide effluent stream. Furthermore, approximately 31% of the fluidizing gas entering the fuel reactor moved to the air reactor, indicating that, with reacting flow, there will be natural gas leaking into the air reactor, which will increase carbon dioxide emissions. Finally, over half of the purge gases move to the adjacent reactor, which helps prevent gas leakage between reactor sections. The effect of static bed height, weir opening height and purge configuration on solid circulation rate, gas leakage and purge fate were investigated. The bed height has a small effect on the solid circulation rate and no effect of gas leakage, over the range of bed heights tested. Furthermore, increasing the weir opening height increases both solid circulation rate and gas leakage until the top of the circulation zone is reached. After this point, there is no change in either solid circulation rate or gas leakage. In terms of purge configuration, there appears to be no benefit for having two purge rows. Either one purge row or having a row of blanked tuyeres appear to be optimal as they decrease gas leakage, while having little effect on solid circulation rate. At the jet velocity tested, the vertical purge configuration prevented the solids from circulating, so it is not recommended for this purge configuration to be used in a PFIR reactor without further testing of different jet velocities. Across all configurations, it was shown that as more purge gas moves into the adjacent reactor section, less gas leakage between reactor sections occurs. It iii was also determined that the primary method of gas movement between the reactor sections is likely via bubbles and/or jets. The next step is to complete the validation of CPFD model of the PFIR reactor using the data presented herein. Additional conditions can also be run in the cold flow chemical looping pilot facility to fill in any gaps that are found during the CPFD model validation, or to fill in research gaps in better understanding the PFIR reactor.

Page generated in 0.0507 seconds