Spelling suggestions: "subject:"carbon fiber/epoxy composite"" "subject:"charbon fiber/epoxy composite""
1 |
Design and development of a novel lightweight long-reach composite robotic armWillis, Darrin 01 August 2009 (has links)
Metallic robotic arms, or manipulators, currently dominate automated industrial operations, but
due to their intrinsic weight, have limited usefulness for large-scale applications in terms of
precision, speed, and repeatability. This thesis focuses on exploring the feasibility of using
polymeric composite materials for the construction of long-reach robotic arms. Different
manipulator layouts were investigated and an ideal design was selected for a robotic arm that has
a 5 [m] reach, 50 [kg] payload, and is intended to operate on large objects with complex
curvature.
The cross-sectional geometry of the links of the arm were analyzed for optimal stiffness- and
strength-to-weight ratios that are capable of preserving high precision and repeatability under
time-dependent external excitations. The results lead to a novel multi-segment link design and
method of production.
A proof-of-concept prototype of a two degrees-of-freedom (2-DOF) robotic arm with a reach of
1.75 [m] was developed. Both static and repeatability testing were performed for verification.
The results indicated that the prototype robot main-arm constructed of carbon fiber-epoxy
composite material provides good stiffness-to-weight and strength-to-weight ratios. Finite
element analysis (FEA) was performed on a 3-D computer model of the arm. Successful
verification led to the use of the 3-D model to define the dimensions of an industrial-sized robotic
arm. The results obtained indicate high stiffness and minimal deflection while achieving a
significant weight reduction when compared to commercial arms of the same size and capability.
|
2 |
A unified plasma-materials finite element model of lightning strike interaction with carbon fiber composite materialsAider, Youssef 09 August 2019 (has links)
This work is devoted to the computational modeling of a lightning strike electric arc discharge induced air plasma and the material response under the lightning strike impact. The simulation of the lightning arc plasma has been performed with Finite element analysis in COMSOL Multiphysics. The plasma is regarded as a continuous medium of a thermally and electrically conductive fluid. The electrode mediums, namely the cathode and anode, have also been included in the simulation in a unified manner, meaning that the plasma and electrode domains are simulated concurrently in one numerical model. The aim is to predict the lightning current density, and the heat flux impinged into the anode's material surface, as well as the lightning arc expansion and pressure and velocity of the plasma flow. Our predictions have been validated by the existing experimental data and other numerical predictions reported by former authors.
|
3 |
Conception et durabilité de réservoirs en composites destinés au stockage de l’hydrogène / Conception design and durability of composite pressure vessel for hydrogen storagePatamaprohm, Baramee 21 February 2014 (has links)
A l'heure actuelle le stockage de l'hydrogène sous forme gazeuse, comprimée à haute pression, apparaît comme la solution le plus mature présentant le meilleur compromis en termes de masse, de pression de service mais aussi de volume des réservoirs. Cependant pour un développement plus large et sécurisé, l'amélioration des performances et la réduction des coûts des réservoirs restent des enjeux prioritaires. C'est dans ce contexte que nous avons étudié le stockage de l'hydrogène dans des réservoirs de type IV, en composites fibres de carbone/époxy. Ce travail a eu pour objectif d'accroitre la fiabilité du dimensionnement. Dans un premier temps, une étude expérimentale de caractérisation des matériaux constitutifs du réservoir a été réalisée. Pour améliorer la fiabilité des calculs, un modèle probabiliste a été proposé pour décrire le comportement de la partie composite du réservoir, principalement la rupture des fibres. Des calculs multiéchelles ont été mis en place basés sur les propriétés mécaniques et physiques des fibres. Les autres modes de dégradations, décollement entre plis, liaison embase-liner ont aussi été pris en compte dans les calculs de comportement du réservoir jusqu'à son éclatement. Enfin des recommandations de dimensionnement du réservoir ont été proposées afin d'améliorer les performances tout en minimisant la masse de composite dans un objectif de réduction des coûts. / Presently, the compressed hydrogen storage under high pressure appears to be the most sophisticated solution regarding to a compromise of mass, service pressure and also volume of pressure vessels. However, the challenges of pressure vessels nowadays are their performance improvement as well as their cost reduction. In this context, we studied the type IV hydrogen storage pressure vessel in carbon fibre/epoxy composites. This work aims to obtain a reliable pressure vessel design. Firstly, an experimental study of associated materials and pressure vessel characterisation has been carried out. Then, we proposed a probabilistic model for a composite which is dedicated in particular to fibre breakage using multi-scale simulations in accordance with its mechanical and physical properties. Once this model joined with damage criteria dedicated separately to the others damage mechanisms are integrated into the pressure vessel simulations. Finally, recommendations on composite pressure vessels have been proposed in order to improve their performances and to decrease the mass of composite directly corresponding to the reduction of composite pressure vessels cost.
|
Page generated in 0.093 seconds