• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 14
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 93
  • 93
  • 33
  • 19
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Carbon cycle changes during the end-Marjuman (Cambrian) extinction in the Southern Appalachians

Gerhardt, Angela Mae 16 May 2014 (has links)
The late Cambrian-early Ordovician transition contains several trilobite extinctions. The first of these extinctions (the end-Marjuman) is thought to coincide with the Steptoean Positive Carbon Isotope Excursion or SPICE, a large and rapid excursion in the marine carbon isotope record. This excursion, which is expressed in sedimentary successions globally, is thought to represent a large perturbation to the carbon cycle during this time. Additionally, a limited amount of carbon isotope data from the Deadwood Formation in the Black Hills of South Dakota suggests the possibility of a small negative ẟ¹³C excursion near the extinction and preceding the SPICE. Previous high-resolution biostratigraphy has identified an expanded record of extinction event within the Nolichucky Formation of the Southern Appalachians making it an excellent candidate for the study of the precise relationship between the extinction and changes in the carbon cycle. This investigation confirms the onset of the SPICE occurs at the extinction boundary however no negative ẟ¹³C excursion occurs at the extinction boundary. Further there is no systematic relationship between local facies changes and ẟ¹³C or the extinction interval across the basin, which suggests that global environmental changes were responsible for both the ẟ¹³C record and the extinction event. / Master of Science
62

Trends in pig product processing at British Neolithic Grooved Ware sites traced through organic residues in potsherds

Mukherjee, A.J., Gibson, Alex M., Evershed, R.P. January 2008 (has links)
No / Gas chromatography (GC), GC-mass spectrometry (GC-MS) and GC-combustion-isotope ratio MS (GC-C-IRMS) analyses of absorbed and surface lipid residues preserved in potsherds were used to explore the extent of pig product processing exploitation in the later British Neolithic Grooved Ware tradition. Assessments were made regarding whether porcine lipids were associated with specific Grooved Ware traits, i.e. decoration, substyle, geographical area and type of site. Two hundred and twenty-two Grooved Ware potsherds were analysed, 70% of which contained lipid concentrations considered significant (>5 μg g−1). All the lipid residues were dominated by animal fats, although plant and beeswax were also detected in a small number of extracts. δ13C values of the major fatty acid components of degraded animal fats (C16:0 and C18:0) were determined for 126 extracts and used to assign ruminant or porcine origins to the residues; 16% of these were found to have a predominantly porcine isotope signature. Statistical associations with pig exploitation were shown to exist with substyle, geographical area and site type, whereas, no relationship was seen between decoration and the type of commodity processed. Intact triacylglycerols were preserved in 19% of the sherds; half of these had distributions consistent with the identifications based on δ13C values, the remainder differed either due to the presence of mixed commodities or because lower molecular weight homologues had been lost due to degradation. In addition to the detection of pig exploitation, results from lipid residue analysis showed a good correlation with faunal assemblages, suggesting that stable isotope analysis may be used as a proxy for animal exploitation at sites where bones have not survived.
63

The effect of within-vineyard variability in vigour and water status on carbon discrimination in Vitis vinifera L. cv Merlot

Rossouw, Gerhard C. 03 1900 (has links)
Thesis (MScAgric (Viticulture and Oenology))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Within-vineyard variability in vigour and water status commonly occurs in South African vineyards. Different soil types found over short distances are probably the main cause of vigour variability, while differences in grapevine water status are commonly induced by lateral water flow in the vineyard, blocked irrigation emitters and differences in soil water-holding capacity. These factors can cause heterogeneous ripening and differences in fruit quality between different parts of the vineyard, an aspect that needs to be avoided as far as possible in order to produce quality wines. Measurements of carbon isotope discrimination (CID) have proved to be a tool to assess grapevine physiology in order to study the effects of environmental parameters on leaf carbon dioxide (CO2) gas exchange and stomatal conductance (gs). Grapevine water deficit stress/strain in reaction to these environmental conditions can then be determined by observing the amount of 13C absorbed by plant material after discrimination of 13C has taken place, and this is influenced by the grapevine stress condition and can indicate water-use efficiency. In this study, the variability of grapevine water status and vigour was determined in order to quantify these parameters in different parts of the vineyard. Two separate trials were conducted, the first at Wellington, South Africa, where different irrigation regimes resulted in variability in grapevine water status between plots. The second trial was at Stellenbosch, South Africa, where plots were divided among different vigour classes and irrigation was applied in different quantities for different irrigation treatments. Within-vineyard variability in water status (Wellington and Stellenbosch) and vigour (Stellenbosch) were then quantified and the effects on some grapevine physiological parameters and berry composition were measured. The treatments in the Wellington trial led to differences in grapevine water status, which could be quantified by measurements of stem water potential (SWP) and leaf water potential (LWP). Soil variability also led to differences in grapevine vigour, which were quantified by measurements of pruning mass, leaf area and shoot length. The effect of the variability in grapevine water status on grapevine physiology was assessed by measuring CID, which was the main focus of the study. Other physiological measurements, such as gs and leaf and canopy temperature, were also conducted. The effect of these conditions on grape berry composition was also studied. In the Stellenbosch trial, soil water content, plant water status measurements (SWP, predawn LWP and LWP), physiological measurements (CID and gs) and berry size measurements were used to classify plots into water status treatments (“wet” and “dry” treatments). The effect of vigour differences was analysed separately from these treatments by using pruning mass as a covariate in the statistical analyses. The effect of vigour variability on the measurements was studied by looking at the effect of the covariate on the measurements, while shoot growth rate, shoot length and leaf area measurements were conducted as vegetative growth measurements. Differences in measurements were then studied between the treatments and between the vigour levels of the different plots. In the Wellington trial, plant water status was determined by irrigation, showing increased stress for treatments that received less irrigation. The differences in plant water status then caused differences in grapevine physiology between the treatments, leading to increased gs for increased irrigation. This of course influenced leaf internal CO2 and therefore CID, although CID was also clearly influenced by berry development. Berry size was influenced by irrigation, with larger berries found in wetter treatments, while berry chemical composition was influenced by the irrigation regime, with increased irrigation leading to increased pH and leading to trends showing increased total soluble solids and malic acid, and reduced total and tartaric acid and colour intensity. In the Stellenbosch trial, plots with higher vigour had increased shoot growth rate, longer shoots and increased leaf area, although topping influenced this. Wet treatment vines also showed slightly longer shoots and larger leaf areas. There were differences in soil water content between the wet and dry treatments, and this led to differences in plant water status. Vigour also influenced pre-dawn LWP, especially in the 2007 season, as higher-vigour vines struggled more to rehydrate through the night. Differences in plant water potential led to differences in grapevine physiology, with increased gs for vines from the wet treatment, while higher-vigour vines had slightly increased gs. The differences in gs led to gas exchange differences and therefore differences in CID, meaning that water status and vigour influenced CID. CID measurements illustrated the long term effect of water status on plant physiology, while measurements such as SWP illustrated the short term effects. CID measurements therefore proved to be accumulative over the season, in contrast to SWP measurements that were much more dependent on the current state of grapevine water status. Other physiological measurements showed that wet-treatment vines had higher photosynthetic rates and evapotranspiration and lower leaf temperatures, while higher-vigour vines had slightly increased evapotranspiration and decreased leaf temperatures. Wet-treatment vines had larger berries, while a higher vigour also led to slightly larger berries. Berry composition was influenced by treatment, where wet-treatment vines had increased pH and total soluble solids, while higher-vigour vines had increased juice pH and, in the 2008 season, decreased total soluble solids. Extremely stressed conditions did not show significant effects on plant water potential, but SWP measurements indicated slightly higher stress for the extremely stressed vines and LWP showed slightly less stressed conditions for these vines. Measurements of gs showed slightly lower values for the extremely stressed vines, while measurements of CID showed large significant differences, with the extremely stressed vines having measurements showing high stress. The measurement therefore indicated highly stressed conditions accurately, while other physiological measurements, such as photosynthetic rate, evapotranspiration and leaf temperatures, only showed trends and no significant differences. Measurements of stomatal conductance reacted to plant water status measurements throughout the diurnal measurement days, while CID only reacted slightly with gs changes during these days and was perhaps influenced more by berry chemical composition and development at this early stage of the season. Vigour and water status therefore influenced grapevine physiology, with a more direct effect by water status and an indirect effect by vigour due to microclimatic differences. This also influenced berry composition and therefore quality. In future studies, CID measurements should be done on juice from which organic acids have been removed in order to eliminate the effect of seasonal berry composition on the measurement. Measurements of CID proved to be an integrative, but sensitive, indicator of grapevine stress, especially at the end of the season. It might at best be useful as a post-harvest management tool for producers or grape buyers, especially for irrigation control, as has also been stated by Van Leeuwen et al. (2007). / AFRIKAANSE OPSOMMING: Binne-wingerd variasie in groeikrag en waterstatus is algemeen in Suid-Afrikaanse wingerde. Verskillende grondsoorte wat na aan mekaar voorkom, is seker een van die vernaamste oorsake van variasie in groeikrag, terwyl verskille in wingerdwaterstatus algemeen deur laterale watervloei in die wingerd, verstopte besproeiingspuite en verskille in grond waterhouvermoë geïnduseer word. Hierdie faktore kan aanleiding gee tot heterogene rypwording en verskille in vrugkwaliteit tussen verskillende dele van die wingerd, ‘n aspek wat so ver moontlik vermy moet word om kwaliteitwyne te kan produseer. Die meting van koolstof-isotoopdiskriminasie (KID) is bewys om as gereedskap te kan dien vir die assessering van wingerdfisiologie om die effekte van omgewingsparameters op blaar koolstofdioksied (CO2) - gasuitruiling en stomatale geleiding (gs) te bestudeer. Die stres/stremming as gevolg van ‘n watertekort in die wingerd in reaksie op hierdie omgewingstoestande kan dan bepaal word deur te kyk na hoeveel 13C deur die plantmateriaal geabsorbeer word ná 13C-diskriminasie plaasgevind het, en dít word deur die wingerdstrestoestande beïnvloed en kan ‘n aanduiding verskaf van die doeltreffendheid van waterverbruik. In hierdie studie is die variasie in wingerdwaterstatus en groeikrag bepaal om hierdie parameters in verskillende dele van die wingerd te kwantifiseer. Twee afsonderlike proewe is uitgevoer, die eerste by Wellington, Suid-Afrika, waar verskillende besproeiingsregimes gelei het tot verskille in die wingerdwaterstatus tussen persele. Die tweede proef was by Stellenbosch, Suid-Afrika, waar persele tussen verskillende groeikragklasse verdeel is en besproeiing in verskillende hoeveelhede vir verskillende besproeiingsbehandelings toegepas is. Binne-wingerd variasie in waterstatus (Wellington en Stellenbosch) en groeikrag (Stellenbosch) is toe gekwantifiseer en die effekte op sekere wingerd-fisiologiese parameters en korrelsamestelling is gemeet. Die behandelings in die Wellington-proef het gelei tot verskille in wingerdwaterstatus, wat deur metings van stamwaterpotensiaal (SWP) en blaarwaterpotensiaal (BWP) gekwantifiseer kon word. Grondverskille het ook gelei tot verskille in wingerdgroeikrag, wat deur metings van snoeimassa, blaaroppervlak en lootlengte gekwantifiseer is. Die effek van die variasie in wingerdwaterstatus op wingerdfisiologie is deur metings van KID bepaal wat die hooffokus van hierdie studie was. Ander fisiologiese metings, soos gs en blaar- en lowertemperatuur, is ook gedoen. Die effekte van hierdie toestande op die samestelling van die druiwekorrels is ook bestudeer. In die Stellenbosch-proef is grondwaterinhoud, metings van plantwaterstatus (SWP, voorsonopgang SWP en BWP), fisiologiese metings (KID en gs) en metings van korrelgrootte gebruik om die persele in waterstatusbehandelings (“nat” en “droë” behandelings) te verdeel. Die effek van verskille in groeikrag is apart van hierdie behandelings geanaliseer deur snoeimassa as ‘n kovariaat in die statistiese analises te gebruik. Die effek van groeikragvariasie op die metings is bestudeer deur ondersoek in te stel na die effek van die kovariaat op die metings, terwyl lootgroeitempo-, lootlengte- en blaaroppervlakmetings as metings van vegetatiewe groei uitgevoer is. Verskille in metings tussen die behandelings en tussen die groeikragvlakke van die verskillende persele is toe bestudeer. In die Wellington-proef is plantwaterstatus deur besproeiing bepaal, met verhoogde stres in behandelings waar daar minder besproeiing toegedien is. Die verskille in plantwaterstatus het dan verskille in wingerdfisiologie tussen die behandelings veroorsaak, wat gelei het tot ‘n verhoogde gs in die geval van verhoogde besproeiing. Dit het natuurlik ‘n effek op die interne CO2 van die blaar en dus op KID gehad, hoewel KID ook duidelik deur korrelontwikkeling beïnvloed is. Korrelgrootte is deur besproeiing beïnvloed, met groter korrels in die natter behandelings, terwyl die chemiese samestelling van die korrel deur besproeiingsregime beïnvloed is. Verhoogde besproeiing het pH verhoog en gelei na tendense wat verhoogde totale oplosbare vaste stowwe en appelsuur, en verminderde totale suur, wynsteensuur en kleurintensiteit getoon het. In die Stellenbosch-proef het persele met hoër groeikrag ook verhoogde lootgroeitempo, langer lote en verhoogde blaaroppervlak getoon, hoewel dit deur top beïnvloed is. Wingerdstokke van die nat behandeling het ook effe langer lote en groter blaaroppervlakke getoon. Daar was verskille in grondwaterinhoud tussen die nat en droë behandelings en dit het verskille in plantwaterstatus veroorsaak. Groeikrag is ook deur voor-sonopgang BWP beïnvloed, veral in die 2007-seisoen, aangesien stokke met hoër groeikrag meer gesukkel het om in die nag te rehidreer. Verskille in plantwaterpotensiaal het gelei tot verskille in wingerdfisiologie, met ‘n verhoogde gs vir stokke in die nat behandeling, terwyl stokke met hoër groeikrag ‘n effens verhoogde gs getoon het. Die verskille in gs het gelei tot verskille in gasuitruiling en dus verskille in KID, wat beteken dat waterstatus en groeikrag ‘n invloed op KID het. KID was meer verteenwoordigend van die langtermyneffekte van water status op plantfisiologie, terwyl metings soos SWP die korttermyneffekte weerspieël het. KID metings was dus akkumalatief oor die seisoen, terwyl SWP metings meer ‘n weerspieëling was van die huidige toestand van plantwaterpotensiaal. Ander fisiologiese metings het getoon dat stokke in die nat behandeling ‘n hoër fotosintesetempo en evapotranspirasie sowel as laer blaartemperature ondervind het, terwyl die stokke met hoër groeikrag effe verhoogde evapotranspirasie en verminderde blaartemperature getoon het. Stokke in die nat behandeling het groter korrels gehad, terwyl hoër groeikrag ook effens groter korrels veroorsaak het. Korrelsamestelling is deur die behandelings beïnvloed, met stokke in die nat behandeling wat verhoogde pH en totale oplosbare vaste stowwe getoon het, terwyl stokke met hoër groeikrag verhoogde pH van die sap en verminderde totale oplosbare vaste stowwe (laasgenoemde in die 2008-seisoen) gehad het. Uitermate toestande van stres het geen beduidende effekte op plantwaterpotensiaal getoon nie, hoewel SWP-metings effens hoër stres vir die uitermate gestresde wingerde getoon het en BWP effens minder gestresde toestande vir hierdie stokke getoon het. Metings van gs het effens laer waardes vir die uitermate gestresde stokke getoon, terwyl metings van KID groot noemenswaardige verskille getoon het, met die metings vir die uitermate gestresde wingerde wat hoër stres aangedui het. Dié meting het dus hoogs gestresde toestande akkuraat aangedui, terwyl ander fisiologiese metings, soos tempo van fotosintese, evapotranspirasie en blaartemperature net tendense en nie beduidende verskille aangedui het nie. Metings van stomatale geleiding het dwarsdeur die dae waarop daaglikse metings gedoen is op plantwaterstatusmetings gereageer, terwyl KID net effens met gs-veranderinge op hierdie dae gereageer het en moontlik meer deur die chemiese samestelling en ontwikkeling van die korrel in hierdie vroeë stadium van die seisoen beïnvloed is. Groeikrag en waterstatus het dus wingerdfisiologie beïnvloed, met ‘n meer direkte effek deur waterstatus en ‘n indirekte effek deur groeikrag as gevolg van mikroklimaatsverskille. Dit het ook korrelsamestelling en dus kwaliteit beïnvloed. In toekomstige studies moet KID-metings gedoen word op sap waarvan die organiese sure verwyder is om die effek van seisoenale korrelsamestelling op die meting uit te sluit. Metings van KID is getoon om ‘n integrerende, maar gevoelige, aanduider van wingerdstres te wees, veral aan die einde van die seisoen. Dit is ten beste miskien bruikbaar as naoesbestuursgereedskap vir produsente of druiwekopers, veral vir besproeiingsbeheer, soos ook reeds deur Van Leeuwen et al. (2007) aangedui is.
64

GENETIC ANALYSIS OF IMPORTANT TRAITS FOR CONFECTIONERY SUNFLOWER IN AUSTRALIA

Yue Sun Unknown Date (has links)
Sunflower is grown worldwide for oil production. In Australia, sunflower is under intense competition from canola as an oil crop. Confectionery sunflower aimed for the overseas snack food market is a potential opportunity for Australian farmers due to its ability to provide off-season supply to the major market located mainly in the northern hemisphere. To serve this aim, new confectionery sunflower hybrids adapted to Australian production system with drought tolerance, large achenes, high self-fertility and rust resistance are of paramount importance. The objectives of this project were to understand the genetic inheritance and genetic linkage relationships of the above traits and also to identify linked DNA markers with the potential for marker-assisted selection (MAS). The inheritance of achene-length was studied in a 12 x 12 diallel and a 14 x 12 North Carolina design II (NC II) mating design. Achene-length was evaluated under three environments for each mating design. Genetic correlation among all five achene-size related traits (achene-length, -width, - thickness and also kernel-length and -width) and 100-achene weight were moderate to high. Narrow-and broad-sense heritability for achene-length was moderate to high and similar for each design. The general combining ability (GCA) and maternal effects were found to be the main genetic factors controlling achene-length and each accounted for around 45% of the total genotypic variance. The inheritance of self-fertility (SF) was assessed with the same 12 x 12 diallel mating design evaluated in two environments. The 12 parents also displayed various levels of SF in addition to a wide range of achene-length. Negative genetic correlations between SF and all five achene-size related traits and 100-achene weight were observed. Modelling achene-length as a covariate revealed that certain pre-pollination floret characteristics represented by achene-length at maturity strongly affects SF in sunflower. When the effect of achene-length was removed statistically as a covariate, the specific combining ability (SCA) effect increased dramatically and became the major factor (other than pre-pollination floret characteristics) for SF determination and accounted for 65% of the total variance. Long achene genotypes tended to have low SF and a positive SCA effect was observed more frequently in F1 hybrids that involved small achene lines. The broad sense heritability was moderate (0.663 ± 0.017), while the estimate of narrow-sense heritability was nearly zero. A segregating F6:7 recombinant inbred line population with 239 progeny was developed from a cross between HaR4, a low delta (Δ), high transpiration efficiency (TE), sunflower line with rust resistance but relatively low SF, and SA52 with all the characteristics in the opposite direction. The population was evaluated in two environments for three TE-related traits including Δ, specific leaf weight (SLW) and chlorophyll content (CC) and four agronomic traits i.e. days to flowering (DTF), plant height (PlantH), SF and rust resistance (RustR). A linkage map 1074.6 cM in length with 138 SSR and 37 ISSR markers consisting of 19 linkage groups was constructed. Spatially adjusted BLUPs were used in QTL analysis for individual and combined environments. Altogether, 10 QTL were identified for Δ, SLW and CC at individual environments, and 7 were detected by a combined analysis. Sixteen QTL were identified for 4 agronomic traits and 14 of them were confirmed by a combined analysis. Significant linkage among all three TE related traits was discovered on linkage group 4 (LG4), where alleles from one parent had the same direction of influence on TE which suggested either coupling phase linkage or pleiotropy. QTL for SF and RustR were closely linked on LG13. An F2 population with 502 progeny developed from a cross between Jumbo, a large achene confectionery sunflower line, and RIL25, an oilseed small achene line, was evaluated for five achene-size related traits in a single field trial. Using a subset of 178 progeny a framework genetic linkage map, 899.7 cM in length, containing 128 SSR markers and 23 ISSR markers was constructed with 18 linkage groups. Based on the results of a simulated QTL analysis, a modified selective genotyping strategy was employed for QTL analysis with 178 F2 individuals (128 randomly selected, 25 shortest achene F2’s and 25 longest achene F2’s). Altogether 18 achene-size related QTL with small effects were identified. Achene-size related genes characteristically expressed additive gene action although several alleles were partially recessive towards the large achene parent. The 18 identified achene-size related QTL were validated in the same diallel mating experiment mentioned above. Significant marker-trait associations were detected for 15 QTL. In addition to 12 significant alleles detected from the F2 population, 12 additional alleles associated with achene-size traits were revealed after the analysis with the diallel. These markers are ready to be used in MAS for confectionery sunflower breeding. Great steps have been made in obtaining essential knowledge of inheritance and linkage of target traits for breeding confectionery sunflower adapted to Australian production environments. The identified markers can be used in MAS and further enhance the breeding process.
65

GENETIC ANALYSIS OF IMPORTANT TRAITS FOR CONFECTIONERY SUNFLOWER IN AUSTRALIA

Yue Sun Unknown Date (has links)
Sunflower is grown worldwide for oil production. In Australia, sunflower is under intense competition from canola as an oil crop. Confectionery sunflower aimed for the overseas snack food market is a potential opportunity for Australian farmers due to its ability to provide off-season supply to the major market located mainly in the northern hemisphere. To serve this aim, new confectionery sunflower hybrids adapted to Australian production system with drought tolerance, large achenes, high self-fertility and rust resistance are of paramount importance. The objectives of this project were to understand the genetic inheritance and genetic linkage relationships of the above traits and also to identify linked DNA markers with the potential for marker-assisted selection (MAS). The inheritance of achene-length was studied in a 12 x 12 diallel and a 14 x 12 North Carolina design II (NC II) mating design. Achene-length was evaluated under three environments for each mating design. Genetic correlation among all five achene-size related traits (achene-length, -width, - thickness and also kernel-length and -width) and 100-achene weight were moderate to high. Narrow-and broad-sense heritability for achene-length was moderate to high and similar for each design. The general combining ability (GCA) and maternal effects were found to be the main genetic factors controlling achene-length and each accounted for around 45% of the total genotypic variance. The inheritance of self-fertility (SF) was assessed with the same 12 x 12 diallel mating design evaluated in two environments. The 12 parents also displayed various levels of SF in addition to a wide range of achene-length. Negative genetic correlations between SF and all five achene-size related traits and 100-achene weight were observed. Modelling achene-length as a covariate revealed that certain pre-pollination floret characteristics represented by achene-length at maturity strongly affects SF in sunflower. When the effect of achene-length was removed statistically as a covariate, the specific combining ability (SCA) effect increased dramatically and became the major factor (other than pre-pollination floret characteristics) for SF determination and accounted for 65% of the total variance. Long achene genotypes tended to have low SF and a positive SCA effect was observed more frequently in F1 hybrids that involved small achene lines. The broad sense heritability was moderate (0.663 ± 0.017), while the estimate of narrow-sense heritability was nearly zero. A segregating F6:7 recombinant inbred line population with 239 progeny was developed from a cross between HaR4, a low delta (Δ), high transpiration efficiency (TE), sunflower line with rust resistance but relatively low SF, and SA52 with all the characteristics in the opposite direction. The population was evaluated in two environments for three TE-related traits including Δ, specific leaf weight (SLW) and chlorophyll content (CC) and four agronomic traits i.e. days to flowering (DTF), plant height (PlantH), SF and rust resistance (RustR). A linkage map 1074.6 cM in length with 138 SSR and 37 ISSR markers consisting of 19 linkage groups was constructed. Spatially adjusted BLUPs were used in QTL analysis for individual and combined environments. Altogether, 10 QTL were identified for Δ, SLW and CC at individual environments, and 7 were detected by a combined analysis. Sixteen QTL were identified for 4 agronomic traits and 14 of them were confirmed by a combined analysis. Significant linkage among all three TE related traits was discovered on linkage group 4 (LG4), where alleles from one parent had the same direction of influence on TE which suggested either coupling phase linkage or pleiotropy. QTL for SF and RustR were closely linked on LG13. An F2 population with 502 progeny developed from a cross between Jumbo, a large achene confectionery sunflower line, and RIL25, an oilseed small achene line, was evaluated for five achene-size related traits in a single field trial. Using a subset of 178 progeny a framework genetic linkage map, 899.7 cM in length, containing 128 SSR markers and 23 ISSR markers was constructed with 18 linkage groups. Based on the results of a simulated QTL analysis, a modified selective genotyping strategy was employed for QTL analysis with 178 F2 individuals (128 randomly selected, 25 shortest achene F2’s and 25 longest achene F2’s). Altogether 18 achene-size related QTL with small effects were identified. Achene-size related genes characteristically expressed additive gene action although several alleles were partially recessive towards the large achene parent. The 18 identified achene-size related QTL were validated in the same diallel mating experiment mentioned above. Significant marker-trait associations were detected for 15 QTL. In addition to 12 significant alleles detected from the F2 population, 12 additional alleles associated with achene-size traits were revealed after the analysis with the diallel. These markers are ready to be used in MAS for confectionery sunflower breeding. Great steps have been made in obtaining essential knowledge of inheritance and linkage of target traits for breeding confectionery sunflower adapted to Australian production environments. The identified markers can be used in MAS and further enhance the breeding process.
66

Performance of slash pine (Pinus elliottii Engelm.) containerized rooted cuttings and bare-root seedlings established on five planting dates in the flatlands of western Louisiana

Akgul, Alper 29 August 2005 (has links)
The forest product industry is keenly interested in extending the normal planting season, as well as in the comparative field performance of standard nursery bare-root seedlings and containerized rooted cuttings. The effect of seasonal planting dates on survival, above and belowground biomass allocation, water relations, gas exchange attributes and foliar carbon isotope composition (δ13C) of two stock types of slash pine (Pinus elliottii Engelm.) were examined. Slash pine bare-root seedlings (BRS) and containerized rooted cuttings (CRC) were hand planted in September, November, January, March and April in three consecutive planting seasons (2000-2001, 2001-2002 and 2002-2003) on three sites with silt loam topsoils in southwestern Louisiana. First-year mean survival of CRC across all planting dates and sites was consistently high at 96 to 98%, whereas BRS survival was significantly (P < 0.0001) lower at 59 to 81% and highly variable among study sites and dates through three planting seasons. Generally, there was a negative relationship between soil moisture at the time of planting and first-year survival of BRS planted September through March in 2001-2002 and 2002-2003 planting seasons, whereas the opposite was observed only for BRS planted in April 2002 and 2003. Survival of CRC was affected very little by the variation in soil moisture. Containerized rooted cuttings had higher early above and belowground biomass, and height and diameter than did BRS. However, three years after planting the size differences between stock types disappeared or became negligible. Early size differences among trees planted September through March also decreased after three years, although September trees were tallest. Growth of the April-planted trees was poor compared to trees planted in other months. Late-planted April trees had higher δ13C values, and higher water-use efficiency in the first growing season compared to earlier planted trees. Differences in δ13C values among the planting dates disappeared in the second growing season. Net photosynthesis rates did not differ considerably between stock types or among planting dates in the second and third growing seasons. This study indicates that it is possible to extend the planting season to as early as September and as late as March by using CRC.
67

グラファイト生成と炭素同位体比変動 : 鉄触媒とサルフィックス処理の効果

Ohta, Tomoko, Nakamura, Toshio, 太田, 友子, 中村, 俊夫 03 1900 (has links)
No description available.
68

Performance of slash pine (Pinus elliottii Engelm.) containerized rooted cuttings and bare-root seedlings established on five planting dates in the flatlands of western Louisiana

Akgul, Alper 29 August 2005 (has links)
The forest product industry is keenly interested in extending the normal planting season, as well as in the comparative field performance of standard nursery bare-root seedlings and containerized rooted cuttings. The effect of seasonal planting dates on survival, above and belowground biomass allocation, water relations, gas exchange attributes and foliar carbon isotope composition (&#948;13C) of two stock types of slash pine (Pinus elliottii Engelm.) were examined. Slash pine bare-root seedlings (BRS) and containerized rooted cuttings (CRC) were hand planted in September, November, January, March and April in three consecutive planting seasons (2000-2001, 2001-2002 and 2002-2003) on three sites with silt loam topsoils in southwestern Louisiana. First-year mean survival of CRC across all planting dates and sites was consistently high at 96 to 98%, whereas BRS survival was significantly (P < 0.0001) lower at 59 to 81% and highly variable among study sites and dates through three planting seasons. Generally, there was a negative relationship between soil moisture at the time of planting and first-year survival of BRS planted September through March in 2001-2002 and 2002-2003 planting seasons, whereas the opposite was observed only for BRS planted in April 2002 and 2003. Survival of CRC was affected very little by the variation in soil moisture. Containerized rooted cuttings had higher early above and belowground biomass, and height and diameter than did BRS. However, three years after planting the size differences between stock types disappeared or became negligible. Early size differences among trees planted September through March also decreased after three years, although September trees were tallest. Growth of the April-planted trees was poor compared to trees planted in other months. Late-planted April trees had higher &#948;13C values, and higher water-use efficiency in the first growing season compared to earlier planted trees. Differences in &#948;13C values among the planting dates disappeared in the second growing season. Net photosynthesis rates did not differ considerably between stock types or among planting dates in the second and third growing seasons. This study indicates that it is possible to extend the planting season to as early as September and as late as March by using CRC.
69

GENETIC ANALYSIS OF IMPORTANT TRAITS FOR CONFECTIONERY SUNFLOWER IN AUSTRALIA

Yue Sun Unknown Date (has links)
Sunflower is grown worldwide for oil production. In Australia, sunflower is under intense competition from canola as an oil crop. Confectionery sunflower aimed for the overseas snack food market is a potential opportunity for Australian farmers due to its ability to provide off-season supply to the major market located mainly in the northern hemisphere. To serve this aim, new confectionery sunflower hybrids adapted to Australian production system with drought tolerance, large achenes, high self-fertility and rust resistance are of paramount importance. The objectives of this project were to understand the genetic inheritance and genetic linkage relationships of the above traits and also to identify linked DNA markers with the potential for marker-assisted selection (MAS). The inheritance of achene-length was studied in a 12 x 12 diallel and a 14 x 12 North Carolina design II (NC II) mating design. Achene-length was evaluated under three environments for each mating design. Genetic correlation among all five achene-size related traits (achene-length, -width, - thickness and also kernel-length and -width) and 100-achene weight were moderate to high. Narrow-and broad-sense heritability for achene-length was moderate to high and similar for each design. The general combining ability (GCA) and maternal effects were found to be the main genetic factors controlling achene-length and each accounted for around 45% of the total genotypic variance. The inheritance of self-fertility (SF) was assessed with the same 12 x 12 diallel mating design evaluated in two environments. The 12 parents also displayed various levels of SF in addition to a wide range of achene-length. Negative genetic correlations between SF and all five achene-size related traits and 100-achene weight were observed. Modelling achene-length as a covariate revealed that certain pre-pollination floret characteristics represented by achene-length at maturity strongly affects SF in sunflower. When the effect of achene-length was removed statistically as a covariate, the specific combining ability (SCA) effect increased dramatically and became the major factor (other than pre-pollination floret characteristics) for SF determination and accounted for 65% of the total variance. Long achene genotypes tended to have low SF and a positive SCA effect was observed more frequently in F1 hybrids that involved small achene lines. The broad sense heritability was moderate (0.663 ± 0.017), while the estimate of narrow-sense heritability was nearly zero. A segregating F6:7 recombinant inbred line population with 239 progeny was developed from a cross between HaR4, a low delta (Δ), high transpiration efficiency (TE), sunflower line with rust resistance but relatively low SF, and SA52 with all the characteristics in the opposite direction. The population was evaluated in two environments for three TE-related traits including Δ, specific leaf weight (SLW) and chlorophyll content (CC) and four agronomic traits i.e. days to flowering (DTF), plant height (PlantH), SF and rust resistance (RustR). A linkage map 1074.6 cM in length with 138 SSR and 37 ISSR markers consisting of 19 linkage groups was constructed. Spatially adjusted BLUPs were used in QTL analysis for individual and combined environments. Altogether, 10 QTL were identified for Δ, SLW and CC at individual environments, and 7 were detected by a combined analysis. Sixteen QTL were identified for 4 agronomic traits and 14 of them were confirmed by a combined analysis. Significant linkage among all three TE related traits was discovered on linkage group 4 (LG4), where alleles from one parent had the same direction of influence on TE which suggested either coupling phase linkage or pleiotropy. QTL for SF and RustR were closely linked on LG13. An F2 population with 502 progeny developed from a cross between Jumbo, a large achene confectionery sunflower line, and RIL25, an oilseed small achene line, was evaluated for five achene-size related traits in a single field trial. Using a subset of 178 progeny a framework genetic linkage map, 899.7 cM in length, containing 128 SSR markers and 23 ISSR markers was constructed with 18 linkage groups. Based on the results of a simulated QTL analysis, a modified selective genotyping strategy was employed for QTL analysis with 178 F2 individuals (128 randomly selected, 25 shortest achene F2’s and 25 longest achene F2’s). Altogether 18 achene-size related QTL with small effects were identified. Achene-size related genes characteristically expressed additive gene action although several alleles were partially recessive towards the large achene parent. The 18 identified achene-size related QTL were validated in the same diallel mating experiment mentioned above. Significant marker-trait associations were detected for 15 QTL. In addition to 12 significant alleles detected from the F2 population, 12 additional alleles associated with achene-size traits were revealed after the analysis with the diallel. These markers are ready to be used in MAS for confectionery sunflower breeding. Great steps have been made in obtaining essential knowledge of inheritance and linkage of target traits for breeding confectionery sunflower adapted to Australian production environments. The identified markers can be used in MAS and further enhance the breeding process.
70

Vertical structure Of atmospheric trace gases over Southeast Australia

Pak, Bernard Ching-Yuen Unknown Date (has links) (PDF)
Trace gas (CO2 and its carbon and oxygen isotopes, CH4, CO, H2 and N2O) vertical profile data above Cape Grim, Tasmania for the period April 1992 to February 1997 are investigated. A climatology of the distribution of each trace gas has been compiled from statistical treatment of the raw data. These climatologies are useful for verification of transport model outputs. Here, the CO2 climatology is compared to simulation results from two transport models (Melbourne University Transport Model and TM2Z) using three different sets of CO2 fluxes separately (compiled with different methods by different authors). Large discrepancies are found between simulations and observations, especially in the free troposphere (4-6 km). By considering emission ratios, trajectories, satellite fire counts and simulation with biomass burning fluxes, the influence of tropical biomass burning plumes on the southeastern Australian region in the austral winter/spring is studied and quantified. This identification process requires a multiple-species approach where the large CO anomalies and the unexpected behaviour of H2 are most revealing. The frequent presence of burning plumes in the mid troposphere complicates one of the original motivations for the Cape Grim Overflight Program, which is to estimate the air-sea exchange of CO2 in this region. A suggestion arising from analysis of pre-1992 aircraft sampling in this region was that the regional CO2 air-sea flux south of Australia is exceptionally large.

Page generated in 0.0697 seconds