Spelling suggestions: "subject:"carbon nanofibers"" "subject:"darbon nanofibers""
21 |
A comparison of SPS and HP sintered, electroless copper plated carbon nanofibre composites for heat sink applicationsUllbrand, Jennifer January 2009 (has links)
The aim of this study is to synthesize a material with high thermal conductivity and a low coefficient of thermal expansion (CTE), useful as a heat sink. Carbon nanofibres (CNF) are first coated with copper by an electroless plating technique and then sintered to a solid sample by either spark plasma sintering (SPS) or hot pressing (HP). The final product is a carbon nanofibre reinforced copper composite. Two different fibre structures are considered: platlet (PL) and herringbone (HB). The influence of the amount of CNF reinforcement (6-24 %wt), on the thermal conductivity and CTE is studied. CNF has an excellent thermal conductivity in the direction along the fibre while it is poor in the transverse direction. The CTE is close to zero in the temperature range of interest. The adhesion of Cu to the CNF surface is in general poor and thus improving the the wetting of the copper by surface modifications of the fibres are of interest such that thermal gaps in the microstructure can be avoided. The poor wetting results in CNF agglomerates, resulting in an inhomogeneous microstructure. In this report a combination of three different types of surface modifications has been tested: (1) electroless deposition of copper was used to improve Cu impregnation of CNF; (2) heat treatment of CNF to improve wetting; and (3) introduction of a Cr buffer layer to further enhance wetting. The obtained composite microstructures are characterized in terms of chemical composition, grain size and degree of agglomeration. In addition their densities are also reported. The thermal properties were evaluated in terms of thermal diffusivity, thermal conductivity and CTE. Cr/Cu coated platelet fibres (6wt% of CNF reinforcement) sintered by SPS is the sample with the highest thermal conductivity, ~200 W/Km. The thermal conductivity is found to decrease with increasing content of CNFs.
|
22 |
Hybrid core-shell nanowire electrodes utilizing vertically aligned carbon nanofiber arrays for high-performance energy storageKlankowski, Steven Arnold January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Jun Li / Nanostructured electrode materials for electrochemical energy storage systems have been shown
to improve both rate performance and capacity retention, while allowing considerably longer
cycling lifetime. The nano-architectures provide enhanced kinetics by means of larger surface
area, higher porosity, better material interconnectivity, shorter diffusion lengths, and overall
mechanical stability. Meanwhile, active materials that once were excluded from use due to bulk
property issues are now being examined in new nanoarchitecture.
Silicon was such a material, desired for its large lithium-ion storage capacity of 4,200
mAh g[superscript]-1 and low redox potential of 0.4 V vs. Li/Li[superscript]+; however, a ~300% volume expansion and
increased resistivity upon lithiation limited its broader applications. In the first study, the
silicon-coated vertically aligned carbon nanofiber (VACNF) array presents a unique core-shell
nanowire (NW) architecture that demonstrates both good capacity and high rate performance. In
follow-up, the Si-VACNFs NW electrode demonstrates enhanced power rate capabilities as it
shows excellent storage capacity at high rates, attributed to the unique nanoneedle structure that
high vacuum sputtering produces on the three-dimensional array.
Following silicon’s success, titanium dioxide has been explored as an alternative highrate
electrode material by utilizing the dual storage mechanisms of Li+ insertion and
pseudocapacitance. The TiO[subscript]2-coated VACNFs shows improved electrochemical activity that
delivers near theoretical capacity at larger currents due to shorter Li[superscript]+ diffusion lengths and highly
effective electron transport. A unique cell is formed with the Si-coated and TiO[subscript]2-coated
electrodes place counter to one another, creating the hybrid of lithium ion battery-pseudocapacitor
that demonstrated both high power and high energy densities. The hybrid cell
operates like a battery at lower current rates, achieving larger discharge capacity, while retaining
one-third of that capacity as the current is raised by 100-fold. This showcases the VACNF
arrays as a solid platform capable of assisting lithium active compounds to achieve high capacity
at very high rates, comparable to modern supercapacitors.
Lastly, manganese oxide is explored to demonstrate the high power rate performance that
the VACNF array can provide by creating a supercapacitor that is highly effective in cycling at
various high current rates, maintaining high-capacity and good cycling performance for
thousands of cycles.
|
23 |
Development of Nanocomposites Based Sensors Using Molecular/Polymer/Nano-Additive RoutesLiu, Chang 30 May 2019 (has links)
No description available.
|
24 |
Intrinsic Self-Sensing of Pulsed Laser Ablation in Carbon Nanofiber-Modified Glass Fiber/Epoxy LaminatesRajan Nitish Jain (10725372) 29 April 2021 (has links)
<div>Laser-to-composite interactions are becoming increasingly common in diverse applications such as diagnostics, fabrication and machining, and weapons systems. Lasers are capable of not only performing non-contact diagnostics, but also inducing seemingly imperceptible structural damage to materials. In safety-critical venues like aerospace, automotive, and civil infrastructure where composites are playing an increasingly prominent role, it is desirable to have means of sensing laser exposure on a composite material. Self-sensing materials may be a powerful method of addressing this need. Herein, we present an exploratory study on the potential of using changes in electrical measurements as a way of detecting laser exposure to a carbon nanofiber (CNF)-modified glass fiber/epoxy laminate. CNFs were dispersed in liquid epoxy resin prior to laminate fabrication via hand layup. The dispersed CNFs form a three-dimensional conductive network which allows for electrical measurements to be taken from the traditionally insulating glass fiber/epoxy material system. It is expected that damage to the network will disrupt the electrical pathways, thereby causing the material to exhibit slightly higher resistance. To test laser sensing capabilities, a resistance baseline of the CNF-modified glass fiber/epoxy specimens was first established before laser exposure. These specimens were then exposed to an infra-red laser operating at 1064 nm, 35 kHz, and pulse duration of 8 ns. The specimens were irradiated for a total of 20 seconds (4 exposures each at 5 seconds). The resistances of the specimens were then measured again post-ablation. In this study, it was found that for 1.0 wt.% CNF by weight the average resistance increased by about 18 percent. However, this values varied for specimens with different weight fractions. This established that the laser was indeed causing damage to the specimen sufficient to evoke a change in electrical properties. In order to expand on this result, electrical impedance tomography (EIT) was employed for localization of laser exposures of 1, 3, and 5 seconds on a larger specimen, a 3.25” square plate. EIT was used to measure the changes in conductivity after each exposure. EIT was not only successful in detecting damage that was virtually imperceptible to the human-eye, but it also accurately localized the exposure sites. The post-ablation conductivity of the exposure sites decreased in a manner that was comparable to the resistance increase obtained during prior testing. Based on this preliminary study, this research could lead to the development of a real-time exposure detection and tracking system for the measurement, fabrication, and defense industries.</div>
|
Page generated in 0.0445 seconds