• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 562
  • 247
  • 106
  • 89
  • 25
  • 20
  • 11
  • 8
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 1382
  • 1382
  • 248
  • 244
  • 168
  • 147
  • 144
  • 137
  • 127
  • 107
  • 104
  • 102
  • 102
  • 99
  • 97
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Electrochemical Insertion/extraction of Lithium in Multiwall Carbon Nanotube/Sb and SnSb₀.₅ Nanocomposites

Chen, Wei Xiang, Lee, Jim Yang, Liu, Zhaolin 01 1900 (has links)
Multiwall carbon nanotubes (CNTs) were synthesized by catalytic chemical vapor deposition of acetylene and used as templates to prepare CNT-Sb and CNT-SnSb₀.₅ nanocomposites via the chemical reduction of SnCl₂ and SbCl₃ precursors. SEM and TEM imagings show that the Sb and SnSb₀.₅ particles were uniformly dispersed in the CNT web and on the outside surface of CNTs. These CNT-metal composites are active anode materials for lithium ion batteries, showing improved cyclability compared to unsupported Sb and SnSb particles; and higher reversible specific capacities than CNTs. The improvement in cyclability may be attributed to the nanoscale dimensions of the metal particles and CNT’s role as a buffer in containing the mechanical stress arising from the volume changes in electrochemical lithium insertion and extraction reactions. / Singapore-MIT Alliance (SMA)
232

Ballistic Transport in Carbon Nanotubes from First-Principles Molecular Dynamics Simulations

Lee, Young-Su, Nardelli, Marco Buongiorno, Marzari, Nicola 01 1900 (has links)
We determined the Landauer ballistic conductance of pristine nanotubes at finite temperature via a novel scheme that combines ab-initio molecular dynamics, maximally-localized Wannier functions, and a tight-binding formulation of electronic transport in nanostructures. Large-scale ab-initio molecular dynamics simulations are used to obtain efficiently accurate trajectories in phase space. The extended Bloch orbitals for states along these trajectories are converted into maximally-localized orbitals, providing an exact mapping of the ground-state electronic structure onto a short-ranged Hamiltonian. Green's functions, self-energies, and ballistic conductance can then be obtained for any given configuration, and averaged over the appropriate statistical ensemble. / Singapore-MIT Alliance (SMA)
233

Carbon Nanotube Growth Using Ni Catalyst in Different Layouts

Nguyen, H. Q., Krishnan, R., Choi, K. W., Thompson, Carl V., Lim, F. Y. 01 1900 (has links)
Vertically aligned carbon nanotubes have been grown using Ni as catalyst by plasma enhanced chemical vapor deposition system (PECVD) in various pre-patterned substrates. Ni was thermally evaporated on silicon substrates with anodized alumina mask prepared in different methods including 2 step anodization of porous alumina template and interference lithography assisted array of pores. The templates helped to define Ni nanodots inside the pores which in turn catalyzed the growth of carbon nanotubes inside the PECVD system at temperature of 700-750C using mixture of ammonia and acetylene gases. The resulting well-aligned multi-walled carbon nanotubes were further investigated using SEM, TEM and Raman spectroscopy. The size, shape and structure of the grown carbon nanotubes were also discussed. / Singapore-MIT Alliance (SMA)
234

Fabrication and properties of aluminum-carbon nanotube accumulative roll bonded composites

Salimi, Sahar 06 1900 (has links)
Accumulative roll bonding was adapted to fabricate a carbon nanotube reinforced aluminum matrix composite. The microstructure was investigated by transmission electron microscopy, and it was confirmed that the nanotubes were embedded into the metal matrix while maintaining their multiwalled structure. Measurements revealed that the as-received carbon nanotubes had a bimodal diameter size distribution, while only nanotubes with diameters >30 nm and more than 30 walls were retained during four consecutive rolling operations at 50% reduction. The elastic deflection and vibration damping properties of the laminated composite were investigated by cantilever bending test and by impulse excitation method in samples with different concentrations of carbon nanotubes. Measurements by both methods revealed that a 0.23wt% concentration of nanotubes increased the elastic modulus according to the rule of mixtures and the damping behavior of the composites increased by the addition of nanotubes up to 0.1wt%. / Materials Engineering
235

Synthesis and stabilization of colloids for optical and magnetic detections.

Aqil, Abdelhafid 17 January 2008 (has links)
See attached files.
236

Study of the nucleation mechanism of carbon nanotubes by field emission techniques/Etude du mécanisme de nucléation des nanotubes de carbone par techniques d'émission de champ

Moors, Matthieu 28 June 2010 (has links)
The present work is focused on the nucleation and growth mechanism of carbon nanotubes (CNT) that we have studied through different field emission techniques (FEM, FIM and atom-probe (PFDMS)). Reaction conditions associated with the CVD synthesis method were modeled inside the microscope aiming at studying nucleation phenomena at high resolution. The interaction between different metals (Fe, Co, Ni, conditioned as sharp tips) and gases (acetylene, ethylene and ethanol) was analyzed operando at high temperatures (500–900K), with the aim of reproducing growth conditions during the imaging process. Ni was, in the end, the only metal studied, due to the poor quality of images acquired from Co and Fe. Aimed at reproducing the conditioning step of the catalyst often observed in CVD protocols, a first study showed that the crystal adopts a polyhedral morphology at the working temperature (873K) in an hydrogen atmosphere or under Ultra-High-Vacuum conditions, by the extension of dense crystal planes like {111} or {100}. The presence of hydrogen in the chamber does not seem to present any influence on the final crystal morphology at temperatures above 600K. When exposed to a carbon-containing gas, nickel crystals present two distinct behaviors following the temperature region that is explored. At temperatures below ~623K, exposing Ni to ethylene or acetylene leads to the formation of a stable and poorly structured nickel carbide layer. The superficiality of this carbide is proven by the ease of its physical (by increasing the electrical field) or chemical (exposure to hydrogen or oxygen) evacuation. These three treatments initiate a clean-off phenomenon that evacuates the carbide layer. Reproducing these experiments in the atom-probe confirmed the carbidic nature of the surface as NiCy compounds were collected. At temperatures above 623K, the carbide layer (formed by exposing Ni to the same gases) becomes unstable. Its formation is related to a transition period that precedes the nucleation of graphenes on the surface. The Ni crystal undergoes a massive morphological transformation when acetylene is introduced in the chamber at 873K. This phenomenon is induced by the presence of carbon on the surface which adsorbs so strongly on step sites that it provokes their creation. Carbon also induces a considerable enhancement of Ni atoms mobility that allows for this transition to occur. Once the new morphology is attained, nucleation of graphenes is observed to start on the extended and carbon-enriched step-containing crystal planes. By reproducing these experiments in the atom-probe, a high surface concentration of carbon dimers and trimers was observed. A kinetic study of their formation was thus achieved and showed that they were formed on the surface by the recombination of Cad. Their potential role as building-blocks of the CNT growth process (which had previously been proposed following theoretical considerations) is thus suggested on the basis of experimental results for the first time. Two critical surface concentrations are highlighted in the present work. The first one is needed for the formation of carbon dimers and trimers and the second one has to be attained, during the morphological transformation, before the onset of graphene nucleation, probably providing a sufficient growth rate of the graphitic nuclei and allowing them to attain their critical size before their decomposition. Finally, the observation of rotational circular patterns, most probably related to carbon nanotubes, suggests that CNT growth (and not only graphene nucleation) occurred episodically in our conditions, confirming the validity of our model.
237

N-Type Thermoelectric Performance of Functionalized Carbon Nanotube-Filled Polymer Composites

Freeman, Dallas 2012 May 1900 (has links)
Carbon nanotubes were dispersed and functionalized with polyethylene imine (PEI) before incorporation in a polyvinyl acetate matrix. The resulting samples exhibit air-stable N-type characteristics with electrical conductivities as great as 1600 S/m and thermopowers as high as 100 microV/K. Thermopowers and electrical conductivities correlate, in a reversal of the trend found in typical materials. This phenomenon is believed to be due to the increase in the number of tubes that are evenly coated in a better dispersed sample. Increasing the amount of PEI relative to the other constituents positively affects thermopower but not conductivity. Air exposure reduces both thermopower and conductivity, but a stable value is reached within seven days following film fabrication. The atmospheric effects on the electrical conductivity prove to be reversible. Oxygen is believed to be the primary contributor to the decay.
238

Carbon nanotube and nanofiber reinforcement for improving the flexural strength and fracture toughness of portland cement paste

Tyson, Bryan Michael 2010 May 1900 (has links)
The focus of the proposed research will be on exploring the use of nanotechnology-based nano-filaments, such as carbon nanotubes (CNTs) and nanofibers (CNFs), as reinforcement in improving the mechanical properties of portland cement paste as a construction material. Due to their ultra-high strength and very high aspect ratios, CNTs and CNFs have been used as excellent reinforcements in enhancing the physical and mechanical properties of polymer, metallic, and ceramic composites. Very little attention has been devoted on exploring the use of nano-filaments in the transportation industry. Therefore, this study aims to bridge the gap between nano-filaments and transportation materials. This will be achieved by testing the integration of CNTs and CNFs in ordinary portland cement paste through state-of-the-art techniques. Different mixes in fixed proportions (e.g. water-to-cement ratio, air content, admixtures) along with varying concentrations of CNTs or CNFs will be prepared. Different techniques commonly used for other materials (like polymers) will be used in achieving uniform dispersion of nano-filaments in the cement paste matrix and strong nano-filaments/cement bonding. Small-scale specimens will be prepared for mechanical testing in order to measure the modified mechanical properties as a function of nano-filaments concentration, type, and distribution. With 0.1 percent CNFs, the ultimate strain capacity increased by 142 percent, the flexural strength increased by 79 percent, and the fracture toughness increased by 242 percent. Furthermore, a scanning electron microscope (SEM) is used to discern the difference between crack bridging and fiber pullout. Test results show that the strength, ductility, and fracture toughness can be improved with the addition of low concentrations of either CNTs or CNFs.
239

Fabrication and Functionalization of Graphene and Other Carbon Nanomaterials in Solution

Widenkvist, Erika January 2010 (has links)
In the last decades several new nanostructures of carbon have been discovered, including carbon nanotubes (CNTs), and the recently discovered 2-dimensional graphene. These new materials exhibit extraordinary and unique properties—making them extremely interesting both for fundamental science and for future applications. It is, however, of crucial importance to develop new and improved fabrication and processing methods for these carbon nanomaterials. In this thesis the concept of applying solution chemistry and solution-based techniques to fabricate and to deposit graphene and other carbon nanomaterials is explored. An area-selective deposition method was developed for CNT and carbon-coated iron nanoparticles. By utilizing organic functionalization the properties of the nanomaterials were tuned, with the purpose to make them soluble in a liquid solvent and also enable them to selectively adsorb to non-polar surfaces. The first step of the functionalization process was an acid treatment, to introduce defects in the materials. This method was also used to create defects in so-called carbon nanosheets (CNS). The effect of the defect formation on the electric properties of the graphene-like CNS was studied; it was found that the resistance of the CNS could be reduced to 1/50 by acid treating of the sample. Also, the effect of the created defects on gas adsorption to the surface of the CNS has been investigated. This was done using atomic layer deposition (ALD) of TiO2 on the CNS, and a clear change in nucleation be-havior was seen due to the acid-treatment. Furthermore, a solution-based new method for fabrication of graphene was developed; this method combines intercalation of bromine into graphite with ultrasonic treatment to exfoliate flakes into a solvent. From the solvent the flakes can be deposited onto an arbitrary substrate. Several important parameters in the method were investigated in order to optimize the process. One important parameter proved to be the choice of solvent in all steps of the procedure; it was shown to influence sonication yield, flake size, and deposition results. Toluene was identified as a suitable solvent. A mild heat-treatment of the starting material was also identified as a way to increase the exfoliation yield. Using this method, fabrication of few-layer graphene sheets was achieved and areas down to 3 layers in thickness were identified—this is in the very forefront of current solution-based graphene fabrication techniques.
240

Key steps towards carbon nanotube-based conductors

January 2012 (has links)
Making a robust carbon nanotube-based conductor as a replacement of copper in electricity grids can initiate a paradigm shift in energy transmission. This dissertation identifies four fundamental factors for making carbon nanotube-based conductors as functionalization, dispersion, concentration and processing. These four factors are discussed in detail by studying four separate systems: nanotube/epoxy composites, nanotube/porous medium density polyethylene (MDPE) composites, nanotube/high density polyethylene (HDPE) composites and pure nanotube cables. In nanotube/epoxy composites, homogeneous dispersion of nanotubes and a strong interface between nanotubes and epoxy matrix were simultaneously achieved through the development of a novel nanotube functionalization. While the degree of functionalization was high, the process was non-destructive to the mechanical properties of the nanotubes. In addition, the functional groups constructed covalent bonds with the epoxy matrix and also made dispersing the nanotubes much easier. As a result, the composites reinforced by the functionalized nanotubes had better mechanical properties than the samples reinforced by the raw nanotubes. In nanotube/porous MDPE composites, the degree of nanotube dispersion reached a level of 1 micron for nanotube agglomerate size within the matrix. This successful dispersion was primarily attributed to creating the porous MDPE. The pore size was tuned to be as small as 1 micron so that the sub-micron long HiPco nanotubes could easily penetrate into the matrix. The nanotube/porous MDPE composites obtained enhancement both in mechanical strength and electrical conductivity compared to the control samples. In nanotube/HDPE composites, the nanotube conducting networks were studied. Conductivity of the composites with the loading ratio at the percolation threshold was not sufficiently high for conductor applications. Nanotube/HDPE composite wires with higher loading ratios up to 40 wt% were prepared. Key factors for improving the formation of the conducting networks were identified. Through optimization in processing, maximum conductivity of ∼10 3 S/m was achieved. Pure nanotube cables were prepared by a solid spinning procedure, which showed the potential to make macroscopic cables of various length and thickness. The pure nanotube cables circumvented the bottleneck in improving conductivity for composite systems, in which polymer in-between the nanotubes caused high contact resistance. The pure nanotube cables reached conductivity as high as ∼10 6 S/m. Through iodine doping, conductivity further was enhanced so that the specific conductivity of the doped cables exceeded that of metals such as copper. As a result of applying the knowledge learned from study of the four fundamental factors, a macroscopic carbon-nanotube cable was created. It reached an unprecedented conductivity as high as ∼10 7 S/m. Mechanically it was more robust than steel, but with 1/6 the weight. This advanced nanotube-based conductor can have a wide spectrum of applications such as transmission lines and low dimensional connecting wires.

Page generated in 0.0612 seconds