• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 27
  • 27
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Identification of Delamination Defects in CFRP Materials through Lamb Wave Responses

Bruhschwein, Taylor John January 2014 (has links)
Delamination is currently a largely undetectable form of damage in composite laminate materials. This thesis will develop a method to more easily detect delamination damage within composite materials. Using finite element analysis modeling and lab testing, a new method from interpreting the results obtained from existing structural health monitoring techniques is developed. Lamb waves were introduced and recorded through an actuator and sensors made of piezoelectric material. The data was then analyzed through a novel data reduction method using the Fast Fourier Transform (FFT). Using the data from FFT, the idea of covariance of energy change was developed. By comparing the covariance of energy change in beams with differing delamination size, thickness and depth, correlations were able to be developed. With these correlations, the severity and of damage was able to be detected.
12

Energy-Saving Non-Metallic Connectors for Precast Sandwich Wall Systems in Cold Regions

Allard, Austin January 2014 (has links)
Conserving energy in large structural buildings has become very important in today's economy. A number of buildings today are constructed with sandwich wall panels. Steel connections are most commonly used in these panels. The problem with steel is that it has a tendency to reduce the thermal resistance of the insulation. This project considers glass fiber reinforcing polymers (GFRP) and carbon fiber reinforcing polymers (CFRP) as an alternate material to steel. An experimental sandwich wall panel was constructed and subjected to freezing temperatures. The results of the experimental program were compared to a theoretical model using the ANSYS computer program. The model was verified using current analytical methods that determine the heat flux of a sandwich wall panel. The methods investigated include the parallel path, zone, parallel flow, and isothermal planes methods. The results suggest that the GFRP connectors perform slightly better than the steel and CFRP connectors. / ND EPSCoR
13

Optimum shear strengthening of reinforced concrete beams

Yapa, Hiran Deshantha January 2011 (has links)
External prestressed carbon fibre reinforced polymer (CFRP) straps can be used to strengthen shear deficient reinforced concrete (RC) structures. The strengthening system is associated with a number of parameters including the number of straps, strap locations, strap stiffness, and strap prestress. The initial goal of this research was to identify the optimum values for these parameters in order to design an efficient and effective shear retrofitting system. The shear friction theory (SFT) and modified compression field theory (MCFT) were identified as potential predictive theories to model the shear behaviour of RC beams retrofitted with CFRP straps. Possible modifications to the theories to reflect CFRP prestressed straps were investigated. Two popular optimisation algorithms namely the genetic algorithm (GA) and particle swarm optimisation (PSO) were coded and tested with six test functions. These algorithms were used to find the optimum shear retrofitting configurations and also to reduce the computational cost associated with the SFT and MCFT evaluations. An experimental investigation was carried out to validate the SFT and MCFT predictions for various CFRP strap configurations. The investigation consisted of an unstrengthened control beam and five CFRP strengthened beams. The shear behaviour of the beams was significantly influenced by the CFRP strap configurations. A critical load level where the beam stiffness started to deteriorate significantly was identified. It was found that there was a correlation between this load level and the yielding of the internal shear links and a rapid increase in crack openmg. The SFT and MCFT were validated using the experimental results. The peak shear capacities predicted using the SFT were more consistent with the stiffness deteriorating loads identified in the experimental investigation than with the ultimate loads of the beams. The reinforcement forces and crack opening values found from the SFT were consistent with the experimental results. The MCFT predicted the total shear response, ultimate shear capacity, crack opening, and internal and external reinforcement forces in the beams. The accuracy of the MCFT predictions reduced slightly when either the strap configuration was highly nonuniforrn or the initial prestress level in the straps was relatively low. The shear link yielding load levels predicted by the MCFT were found to be similar to the SFT predictions. By using the coded optimisation algorithms in combination with the SFT or MCFT, the optimum CFRP strap configurations were found for a selected case study. Both theories predicted an offset for the optimum strap locations from the locations associated with equal spacings along the shear span. A reasonable agreement between the SFT and MCFT predictions for the optimum shear strengths and strap locations was observed. A parametric study demonstrated that the concrete strength, internal shear link locations, beam depth, and shear span to depth ratio of the beam do not significantly influence the optimum strengthening configurations for the CFRP strap system. External prestressed carbon fibre reinforced polymer (CFRP) straps can be used to strengthen shear deficient reinforced concrete (RC) structures. The strengthening system is associated with a number of parameters including the number of straps, strap locations, strap stiffness, and strap prestress. The initial goal of this research was to identify the optimum values for these parameters in order to design an efficient and effective shear retrofitting system. The shear friction theory (SFT) and modified compression field theory (MCFT) were identified as potential predictive theories to model the shear behaviour ofRC beams retrofitted with CFRP straps. Possible modifications to the theories to reflect CFRP prestressed straps were investigated. Two popular optimisation algorithms namely the genetic algorithm (GA) and particle swarm optimisation (PSO) were coded and tested with six test functions. These algorithms were used to find the optimum shear retrofitting configurations and also to reduce the computational cost associated with the SFT and MCFT evaluations. An experimental investigation was ca1Tied out to validate the SFT and MCFT predictions for various CFRP strap configurations. The investigation consisted of an unstrengthened control beam and five CFRP strengthened beams. The shear behaviour of the beams was significantly influenced by the CFRP strap configurations. A critical load level where the beam stiffness started to deteriorate significantly was identified. It was found that there was a correlation between this load level and the yielding of the internal shear links and a rapid increase in crack opening. The SFT and MCFT were validated using the experimental results. The peak shear capacities predicted using the SFT were more consistent with the stiffness deteriorating loads identified in the experimental investigation than with the ultimate loads of the beams. The reinforcement forces and crack opening values found from the SFT were consistent with the experimental results. The MCFT predicted the total shear response, ultimate shear capacity, crack opening, and internal and external reinforcement forces in the beams. The accuracy of the MCFT predictions reduced slightly when either the strap configuration was highly nonuniform or the initial prestress level in the straps was relatively low. The shear link yielding load levels predicted by the MCFT were found to be similar to the SFT predictions. By using the coded optimisation algorithms in combination with the SFT or MCFT, the optimum CFRP strap configurations were found for a selected case study. Both theories predicted an offset for the optimum strap locations from the locations associated with equal spacings along the shear span. A reasonable agreement between the SFT and MCFT predictions for the optimum shear strengths and strap locations was observed. A parametric study demonstrated that the concrete strength, internal shear link locations, beam depth, and shear span to depth ratio of the beam do not significantly influence the optimum strengthening configurations for the CFRP strap system.
14

Behavior of Reinforced Concrete Beams Retrofitted in Flexure Using CFRP-NSM Technique

Al-Obaidi, Salam 21 May 2015 (has links)
A variety of retrofitting methods are used to upgrade existing structures. For example, steel plates and Fiber Reinforced Polymer (FRP) jackets are externally bonded to members to increase their capacity in flexure and shear. However, due to the issue of corrosion these strengthening systems may lose their efficiency with time. FRP materials have been used to strengthen many structural components of different shapes and types. FRP jackets, FRP Strips, and FRP rods have commonly been used to rehabilitate existing structural components. The many advantages of using FRP as strengthening materials have made this material an attractive alternative: advantages such as lightweight, high strength, and ease of setting up. Among the many applications using FRP, Near Surface Mounted -- Fiber Reinforced polymer (NSM-FRP) is a promising technique used to strengthen concrete members. However, de-bonding issues have to be overcome to make this technique efficient and reliable. The NSM-FRP technique consists of making a groove along the surface of the concrete member to be retrofitted with depth less than the cover of the member. After cleaning the groove, epoxy paste is used to fill two-thirds of the groove's depth. The FRP element is then mounted in the groove. Finally, the groove is filled with epoxy and the excessive epoxy is leveled with surface of the concrete. This technique makes the FRP material completely covered by epoxy in the cover of the concrete. This method can be used for strengthening both the positive and negative moment regions of girders and slabs. Groove size, paste, concrete, and rods properties are the main variables that control the efficiency of the NSM-FRP rods. The main objective of this research project is to determine the behavior of reinforced concrete beams that are strengthened with NSM-CFRP reinforcement bars. In this research project, the bond characteristics of NSM-CFRP reinforcement bars are first determined from pullout tests. Then, NSM-CFRP rods are installed in reinforced concrete beams and the beams are tested. Loads, strains, and deflections are measured and theoretical and measured capacities are compared. Finally, the reliability and efficiency of using NSM-CFRP rods technique in retrofitting existing structures is observed.
15

Faserverbundleichtbau in der Großserie: Chancen und Herausforderungen für den Produktentwickler

Helms, Olaf 10 December 2016 (has links) (PDF)
Im Luftfahrtbereich haben sich kohlenstofffaserverstärkte Kunststoffe (CFK) wegen ihrer hohen spezifischen Festigkeiten und Steifigkeiten längst als Konstruktionswerkstoffe etabliert. In der Großserienfertigung von Automobilkarosserien kommt diese Materialgruppe jedoch nur zögerlich zum Einsatz. Offensichtlich sprechen noch viele Argumente für den Einsatz von metallischen Werkstoffen: Denn auch Leichtmetalle und pressgehärtete Stähle ermöglichen immer höhere Leichtbaugrade, ohne dabei signifikante Kostensteigerungen zu generieren. Zudem sind Fertigungs- und Montageabläufe für Metallkarosserien etabliert und weitgehend frei von Entwicklungsrisiken. Vor diesem Hintergrund erscheint es schwer, mit neuen Leichtbaumaterialien und den zugehörigen Bauweisen einen Durchbruch erzielen zu können. Dabei zeigt das Produktsegment der Supersportwagen schon deutlich, dass zusätzliche Leichtbaupotentiale durch beanspruchungsgerecht gestaltete und optimierte CFK-Strukturen für den Automobilbau eröffnet werden. Bislang lassen sich derartig optimierte CFK-Strukturen jedoch kaum wettbewerbsfähig in Großserie realisieren. An dieser Stelle ergeben sich Chancen und zugleich neue Herausforderungen für die Produktentwickler: Zum einen sind Faserverbundbauweisen zu erarbeiten, mit denen die Leichtbaupotentiale von CFK weitgehend ausgereizt werden. Zum anderen ist die automatisierte Fertigung bei hohen Taktraten zu ermöglichen. Die Lösung beider Teilaufgaben setzt den Einsatz geeigneter materialspezifischer Konstruktionsmethoden voraus.
16

Behavior of Non-Ductile Slender Reinforced Concrete Columns Retrofit by CFRP Under Cyclic Loading

Aules, Wisam Amer 14 March 2019 (has links)
In the Middle East region and many countries in the world, older reinforced concrete (RC) columns are deemed to be weak in seismic resistance because of their low amount of reinforcement, low grades of concrete, and large spacing between the transverse reinforcement. The capacity of older RC columns that are also slender is further reduced due to the secondary moments. Appropriate retrofit techniques can improve the capacity and behavior of concrete members. In this study, externally bonded Carbon Fiber Reinforced Polymer (CFRP) retrofit technique was implemented to improve the behavior of RC columns tested under constant axial load and cyclic lateral load. The study included physical testing of five half-scale slender RC columns, with shear span to depth ratio of 7. Three specimens represented columns in a 2-story, and two specimens represented columns in a 4-story building. All specimens had identical cross sections, reinforcement detail, and concrete strength. Two specimens were control, two specimens were retrofit with CFRP in the lateral direction, and one specimen retrofit in the longitudinal and lateral directions. A computer model was created to predict the lateral load-displacement relations. The experimental results show improvement in the retrofit specimens in strength, ductility, and energy dissipation. The effect of retrofitting technique applied to two full-scale prototype RC buildings, a 2-story and a 4-story building located in two cities in Iraq, Baghdad, and Erbil, was determined using SAP2000.
17

Development of an automated adjusting process for robotic end-effectors to handle dry textiles for preforming of carbon fiber reinforced plastics

Leblebici, Robin January 2018 (has links)
In order to fulfill increasing production rates, new automated production technologies are required for manufacturing carbon fiber reinforced plastic components for the aerospace industry. Currently, large, double curved composite components have to be manufactured manually, which leads to high process times and poor scalability. As a consequence, a team of cooperating robots with passively adjustable end-effectors was developed, that is capable of handling dry carbon textiles and can be used for layups in double curved molds. This thesis deals with the implementation of a robot program, that performs an automated adjustment of each end-effector to the surface geometry of the manufactured part. The functional principle and the accuracy of the process are evaluated. Further, the automatically adjusted end-effectors are utilized to cooperatively layup carbon plies. The results show, that the accuracy of the automated adjusting process is sufficient to drape carbon fabrics during pick-up and automated layup is possible with this approach. In conclusion, the developed process can be integrated into a fully automated process for future experiments, but hardware inaccuracies should be improved, in order to further enhance the accuracy of the system.
18

Cyclic Loading Behavior of CFRP-Wrapped Non-Ductile Reinforced Concrete Beam-Column Joints

Zerkane, Ali S. H. 04 May 2016 (has links)
Use of fiber reinforced polymer (FRP) material has been a good solution for many problems in many fields. FRP is available in different types (carbon and glass) and shapes (sheets, rods, and laminates). Civil engineers have used this material to overcome the weakness of concrete members that may have been caused by substandard design or due to changes in the load distribution or to correct the weakness of concrete structures over time specially those subjected to hostile weather conditions. The attachment of FRP material to concrete surfaces to promote the function of the concrete members within the frame system is called Externally Bonded Fiber Reinforced Polymer Systems. Another common way to use the FRP is called Near Surface Mounted (NSM) whereby the material is inserted into the concrete members through grooves within the concrete cover. Concrete beam-column joints designed and constructed before 1970s were characterized by weak column-strong beam. Lack of transverse reinforcement within the joint reign, hence lack of ductility in the joints, and weak concrete could be one of the main reasons that many concrete buildings failed during earthquakes around the world. A technique was used in the present work to compensate for the lack of transverse reinforcement in the beam-column joint by using the carbon fiber reinforced polymer (CFRP) sheets as an Externally Bonded Fiber Reinforced Polymer System in order to retrofit the joint region, and to transfer the failure to the concrete beams. Six specimens in one third scale were designed, constructed, and tested. The proposed retrofitting technique proved to be very effective in improving the behavior of non-ductile beam-column joints, and to change the final mode of failure. The comparison between beam-column joints before and after retrofitting is presented in this study as exhibited by load versus deflection, load versus CFRP strain, energy dissipation, and ductility.
19

Ultrasonic stochastic localization of hidden discontinuities in composites using multimodal probability beliefs

Warraich, Daud Sana, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2009 (has links)
This thesis presents a technique used to stochastically estimate the location of hidden discontinuities in carbon fiber composite materials. Composites pose a challenge to signal processing because speckle noise, as a result of reflections from impregnated laminas, masks useful information and impedes detection of hidden discontinuities. Although digital signal processing techniques have been exploited to lessen speckle noise and help to localize discontinuities, uncertainty in ultrasonic wave propagation and broadband frequency based inspections of composites still make it a difficult task. The technique proposed in this thesis estimates the location of hidden discontinuities stochastically in one- and two-dimensions based on statistical data of A-Scans and C-Scans. Multiple experiments have been performed on carbon fiber reinforced plastics including artificial delaminations and porosity at different depths in the thickness of material. A probabilistic approach, which precisely localizes discontinuities in high and low amplitude signals, has been used to present this method. Compared to conventional techniques the proposed technique offers a more reliable package, with the ability to detect discontinuities in signals with lower intensities by utilizing the repetitive amplitudes in multiple sensor observations obtained from one-dimensional A-Scans or two-dimensional C-Scan data sets. The thesis presents the methodology encompassing the proposed technique and the implementation of a system to process real ultrasonic signals and images for effective discontinuity detection and localization.
20

Faserverbundleichtbau in der Großserie: Chancen und Herausforderungen für den Produktentwickler

Helms, Olaf January 2016 (has links)
Im Luftfahrtbereich haben sich kohlenstofffaserverstärkte Kunststoffe (CFK) wegen ihrer hohen spezifischen Festigkeiten und Steifigkeiten längst als Konstruktionswerkstoffe etabliert. In der Großserienfertigung von Automobilkarosserien kommt diese Materialgruppe jedoch nur zögerlich zum Einsatz. Offensichtlich sprechen noch viele Argumente für den Einsatz von metallischen Werkstoffen: Denn auch Leichtmetalle und pressgehärtete Stähle ermöglichen immer höhere Leichtbaugrade, ohne dabei signifikante Kostensteigerungen zu generieren. Zudem sind Fertigungs- und Montageabläufe für Metallkarosserien etabliert und weitgehend frei von Entwicklungsrisiken. Vor diesem Hintergrund erscheint es schwer, mit neuen Leichtbaumaterialien und den zugehörigen Bauweisen einen Durchbruch erzielen zu können. Dabei zeigt das Produktsegment der Supersportwagen schon deutlich, dass zusätzliche Leichtbaupotentiale durch beanspruchungsgerecht gestaltete und optimierte CFK-Strukturen für den Automobilbau eröffnet werden. Bislang lassen sich derartig optimierte CFK-Strukturen jedoch kaum wettbewerbsfähig in Großserie realisieren. An dieser Stelle ergeben sich Chancen und zugleich neue Herausforderungen für die Produktentwickler: Zum einen sind Faserverbundbauweisen zu erarbeiten, mit denen die Leichtbaupotentiale von CFK weitgehend ausgereizt werden. Zum anderen ist die automatisierte Fertigung bei hohen Taktraten zu ermöglichen. Die Lösung beider Teilaufgaben setzt den Einsatz geeigneter materialspezifischer Konstruktionsmethoden voraus.

Page generated in 0.0962 seconds