• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 14
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 73
  • 16
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Identification, Quantification, and Constraint of Uncertainties Associated with Atmospheric Black Carbon Aerosols

Li, Hanyang 29 September 2020 (has links)
No description available.
12

Synchrotron Based Infrared Microspectroscopy of Carbonaceous Chondrites.

Yesiltas, Mehmet 01 January 2015 (has links)
Relationships between organic molecules and inorganic minerals are investigated in five carbonaceous chondrites, Northwest Africa 852 (CR2), Tagish Lake (C2-ungroupped), Orgueil (CI1), Sutter's Mill (CM), and Murchison (CM2), with micron spatial resolution using synchrotron-based imaging micro-FTIR spectroscopy. Correlations based on absorption strength for various constituents are determined using statistical correlation analysis. Silicate band is found to be positively correlated with stretching modes of aliphatic hydrocarbons in NWA 852 and Tagish Lake. The former is highly correlated with the hydration band in all meteorites. Negative correlation is observed between water+organics and carbonate bands in all meteorites. Two dimensional infrared maps for NWA 852 and Orgueil show that carbonates are spatially separated from water+organic combination, silicates, OH, and CH distributions. Overlapping of the latter three in NWA 852 and Tagish Lake suggests a possible catalytic role of phyllosilicates in the formation of organics. Additionally, spectroscopic analyses on Sutter's Mill meteorite fragments present multiple distinct mineralogies. Spatial and spectral evidences on this regolith breccia suggest mixing of multiple parent bodies. Ratios of asymmetric CH2 and CH3 band strengths for NWA 852, Tagish Lake, and Sutter's Mill are similar to the average ratio of interplanetary dust particles and Wild 2 cometary dust particles, however significantly exceeds that of interstellar medium objects and several aqueously altered carbonaceous chondrites such as Orgueil. This suggests distinct formation regions and/or parent body processing of organics for these meteorites. Our infrared spectro-microtomography measurements on Murchison meteorite, representing the first such measurement on any kind of meteorite, comprise of three-dimensional reconstructions of specific molecular functional groups for understanding the spatial distributions of these groups.
13

Micro-Raman Spectroscopy of Carbonaceous Chondrite Meteorites

Habach, Asmail 01 January 2014 (has links)
Analyzing the constituents of meteorites has played an important role in forming the contemporary theories of solar system evolution, planets formation, and stellar evolution. Meteorites are often a complex mixture of common rock forming silicates, such as olivines and pyroxenes, with a range of exotic species including hydrated silicates, and in some cases organic compounds. We used Micro-Raman spectroscopy to analyze the compositions of three carbonaceous chondrites: NWA852, Murchison and Allende. Raman spectra were measured using laser sources with different excitation wavelengths: HeNe 633 nm and Nd:YAG 532 nm. We were able to detect 9 minerals in NWA852, 3 minerals in Murchison and 4 minerals in Allende. Some of these minerals like pyrite in NWA852 and magnetite in NWA852 and Murchison provide evidence for potential previous organic life. Other minerals like ringwoodite in Allende and lizardite in NWA852 reveal information about previous astrophysical and geological events experienced by the meteorites. The detection of graphite in the Murchison and Allende reveals information about the microstructure of these meteorites.
14

Quantification of Carbonaceous Pollutants from On-Road Vehicles at Selected Inner-City Settings

Hu, Jiangchuan 18 September 2012 (has links)
No description available.
15

An Examination of the Carbonaceous Materials in the S3 Bed of the Barberton Greenstone Belt, South Africa

Scroggs, Elizabeth E. January 2011 (has links)
Carbonaceous materials found in Archean rocks have been the source of study and controversy for the last two decades due to questions of the biogenecity of these particles. One of the key locations for these studies is the Barberton Greenstone Belt (BGB), in South Africa which contains some of the oldest known rocks on Earth, ranging in age from 3.5 to 3.2 billion years old. Preserved within the Onverwacht and Fig Tree Groups of the BGB are spherules that formed by the condensation of an impact-produced global vapor plume. The spherules are distal deposits that would have been deposited globally, but are only preserved at this location and in western parts of Australia. Like several other sediments in the BGB, there is evidence of minor amounts of carbonaceous particles contained within the spherule beds. Four individual impact events are preserved in distinct beds designated as S1, S2, S3, and S4. Due to the wide distribution of this bed in a variety of depositional settings, including both protected shallow and deep water depositional settings where there is little evidence of reworking, the S3 bed is an ideal choice for mineralogical, geochemical, and petrographic studies of impact spherules. This research examines samples from four different locations of the S3 spherule bed layer, the Barite Syncline, Maid-of-the-Mist, Sheba Mine, and Loop Road locations, in order to determine the origin of carbonaceous particles contained within the bed. Several geologic processes could account for the presence of the carbonaceous materials within the S3 spherule bed layer. These processes include: (1) Diagenetic processes, (2) Fisher-Tropsch Synthesis, (3) Microbial activity, and (4) Primary condensates from the impact plume. In order to distinguish between these processes, the spatial distribution of the carbonaceous matter was mapped, noting the mineral associations with these grains. Petrographic and electron microanalytical studies of the S3 samples reveal the presence of carbonaceous material in the sections with highly concentrated spherules, Barite Syncline, Loop Road, and Sheba Mine locations, but not in the samples from the Maid-of-the-Mist location, where there is a low concentration of spherules and abundant admixed volcanic detritus. Only Fischer-Tropsch Synthesis can be excluded as a process responsible for the origin of carbonaceous materials in the S3 beds. Though there is no direct evidence of the biogenecity of the observed carbonaceous materials, other textual observations within the S3 spherule bed are consistent with microbial activity, including Ambient Inclusion Trails and an unusual feature with a cyanobacteria-like morphology. While microbial activity cannot be ruled out as a process responsible for the origins of the carbonaceous materials, the findings of this study indicate that the carbon was mobilized from within the spherules during diagenesis. The location of carbon along spherule rims and microfractures within the spherules can also be attributed to diagenetic processes, such as fracture flow, dissolution, and replacement. A plausible explanation is that the carbon was a primary condensate from the impact plume, but has been diagenetically remobilized locally into microfractures and along the rims of the spherules. / Geology
16

Effect of the addition of different waste carbonaceous materials on coal gasification in CO2 atmosphere

Parvez, A.M., Mujtaba, Iqbal M., Pang, C., Lester, E.H., Wu, T. 29 April 2016 (has links)
Yes / In order to evaluate the feasibility of using CO2 as a gasifying agent in the conversion of carbonaceous materials to syngas, gasification characteristics of coal, a suite of waste carbonaceous materials, and their blends were studied by using a thermogravimetric analyser (TGA). The results showed that CO2 gasification of polystyrene completed at 470 °C, which was lower than those of other carbonaceous materials. This behaviour was attributed to the high volatile content coupled with its unique thermal degradation properties. It was found that the initial decomposition temperature of blends decreased with the increasing amount of waste carbonaceous materials in the blends. In this study, results demonstrated that CO2 co-gasification process was enhanced as a direct consequence of interactions between coal and carbonaceous materials in the blends. The intensity and temperature of occurrence of these interactions were influenced by the chemical properties and composition of the carbonaceous materials in the blends. The strongest interactions were observed in coal/polystyrene blend at the devolatilisation stage as indicated by the highest value of Root Mean Square Interaction Index (RMSII), which was due to the highly reactive nature of polystyrene. On the other hand, coal/oat straw blend showed the highest interactions at char gasification stage. The catalytic effect of alkali metals and other minerals in oat straw, such as CaO, K2O, and Fe2O3, contributed to these strong interactions. The overall CO2 gasification of coal was enhanced via the addition of polystyrene and oat straw.
17

Tailoring Reactivity, Architecture and Properties of High Performance Polyimides: From Additive Manufacturing to Graft Copolymers

Arrington, Clay Bradley 24 June 2021 (has links)
Additive manufacturing provides unmatched control and diversity over structural design of polymeric, ceramic and metallic parts. Nevertheless, until recently, the toolbox of polymeric feedstocks for light based additive manufacturing limited employment of printed parts for applications necessitating high thermomechanical performance. Development of synthetic pathways permitted the first additive manufacturing of high performance poly(amide imides) via ultraviolet assisted direct ink write (UV-DIW) printing. Precursor resins exhibited prerequisite rheology and reactivity for UV-DIW and produced organogels were well-defined and self-supporting. Thermal treatment induced drying and imidization of the precursor organogels to form the desired poly(amide imide) structures. During post-processing the parts displayed linear isotropic shrinkage as low as 26% and exhibited competitive thermomechanical properties. Following expansion of the high performance backbones available for additive manufacturing, simplification of synthetic rigors was undertaken. This investigation facilitated the evolution of the first photocurable and processable small molecule polyimide precursors. These supramolecular carboxylate ammonium nylon salts, coined polysalts, allowed for additive manufacturing of both high performance polyimides and polyetherimides using vat photopolymerization (VP). The use of small molecule precursors over previously investigated polymeric precursors displayed much lower solution viscosities yielding reduction of organic solvent loading, inducing lower overall shrinkage. Polysalts provide a stimulating platform for rapid and facile printing of high performance polyimides in the future. Surveying the excellent carbonization behavior for aromatic polyimides spurred translation of known 2D protocols to post-processing of printed polyimides. Applying pyrolysis methodologies to parts produced using VP and UV-DIW induced efficient carbonization at 1000 °C. Remarkably, the carbonized parts retained structure and did not display cracks or pore formation. Raman spectroscopy indicated production of disordered carbon via the utilized pyrolysis protocol, in line with literature on carbonization of PMDA-ODA polyimide at 1000 °C. Electrical testing indicated production of conductive materials following pyrolysis, with carbonization temperature modulating the performance. The excellent thermal stability, transport properties, and known mechanical performance of carbonaceous materials may enable application of these printed objects in customized electronics and aerospace environments. Exploration of drop-in monomeric units permitted a multi-pronged research program into augmentation of mechanical, rheological and transport properties of high performance polyetherimides (PEIs). Installation of sodium or lithium substituted disulfonated monomers via classical two-step polyimide synthesis afforded two series of sulfonated polyetherimides (sPEI). The sPEIs exhibited robust thermal properties, with high sulfonate mol% inducing Tg > 300 °C. X-ray scattering experiments revealed the development of domains via inclusion of the sulfonate moieties, with low mol% producing larger domain spacing. The larger domains present in the low mol% sPEIs yielded improved ionic liquid uptake within 2 d, yielding improved ionic conductivities at room temperature relative to high mol% samples. The observed conductivities indicated potential of the sPEIs as battery electrolytes, but further ionic liquid incorporation is required for competitive performance. Development of a poly(ethylene glycol) (PEG) bearing macromonomer facilitated synthesis of PEIs and PI graft copolymers. When coupled with 4,4'-(4,4'-isopropylidene-diphenoxy)diphthalic anhydride (BPADA) and meta-phenylene diamine (mPD), the PEG-grafted materials exhibited signs of phase mixing at low mol% incorporation of macromonomer, with a single observable Tg depressed from neat BPADA-mPD. Doping of the PEI-g-PEG with lithium salts allowed for production of polymeric films that displayed good ionic conductivities at room temperatures. Extension of the PEG macromonomer into fully aromatic PIs yielded phase separated materials even at modest loadings, >2.5 mol%. The formed PEG-g-PMDA-ODA contained thermally stable PI main-chains with thermally labile graft chains, which when thermally treated induced facile quantitative PEG removal. Remarkably, the thermally treated materials retained flexibility, even at >60 wt.% PEG removal. Further investigations aim to explore use of novel PEIs in energy storage as well as low density and dielectric materials. / Doctor of Philosophy / High performance polymers enjoy wide use in microelectronics and aerospace industries due to high thermal stability and excellent mechanical performance. However, processing restrictions hinder manufacturing of 3-dimensional objects of many high performance polymers suitable for extreme environments. Additive manufacturing, also known as 3D printing, has garnered attention in both academic and industrial settings over the last four decades due to the unmatched control over part design and internal structure, but the material arsenal for additive manufacturing of polymers lacks options for applications demanding high thermal stability. The first half of this dissertation aimed to promote translation of high performance polymeric chemistries to suitable feedstocks for additive manufacturing. By designing and developing novel chemical pathways, traditional processing limitations were circumvented and high performance polymers, such as poly(amide imides) and polyimides, were successfully processed via light based additive manufacturing. Likewise, by investigating carbonization dynamics of polyimides and expanding current additive manufacturing techniques for processing of fully aromatic polyimides, complex 3D carbonaceous materials were obtained. These carbon objects present extreme thermal stability and electrical conductivity, advantageous for aerospace and electronic industries. Additionally, investigations allowed for development of synthetically facile routes for expanding the available polyimide backbones for additive manufacturing via use of small molecule precursors. The second half of the dissertation explored novel polyetherimide and polyimide reagents for production of functional materials. Harnessing ionic building blocks permitted synthesis of a series of thermally robust polyetherimides displaying promise for energy storage. Similarly, coupling previous literature for ion conduction in solid polymer electrolytes for battery applications with thermally stable and flame resistant polyetherimides enabled synthesis of a series of innovative graft copolymers with good room temperature ionic conductivities. Lastly, pairing of thermally labile polymers with thermally resistant polyimide backbones allowed for development of an exciting platform for obtaining highly insulting and flexible films for electronics applications. Outlined future work aims to probe the formation of pores in the obtained polymer
18

The Formation and Alteration of the Renazzo-Like Carbonaceous Chondrites

Schrader, Devin Lee January 2012 (has links)
This study investigates the pre-accretionary formation conditions of individual minerals within chondrules and whole-rock parent asteroid processes from the Renazzo-like carbonaceous (CR) chondrites. It presents a comprehensive work on the whole-rock O-isotope composition, sulfide-bearing opaque minerals, and type-II chondrules within the CR chondrites. Whole-rock O-isotope composition and minerals present in type-II chondrules are found to be related to the degree of parent asteroid aqueous alteration. Primary minerals within chondrules, formed prior to accretion of the CR chondrite parent asteroid, are used to constrain both the environment and the conditions present during chondrule formation.Chondrule formation, as recorded by chondrules in the CR chondrites, took place under dust- and ice-rich conditions relative to solar values. Type-II (FeO-rich) chondrules contain FeO-poor fragments compositionally similar to type-I (FeO-poor) chondrules; the formation of type-II chondrules may have occurred after the formation of type-I chondrules. The dust and ice abundances present during type-II chondrule formation were higher than those of type-I chondrules, although both populations probably exchanged with the same ¹⁶O-poor gas reservoir. Both the oxygen fugacity (fo₂) and sulfur fugacity (fs₂) appear to have increased from type-I to type-II chondrule formation, and between individual type-II chondrules. The increase in fo₂ and fs₂ may be due to the dissipation of H2 in the early Solar System. Gas-solid oxidation/sulfidation of Fe,Ni metal is recorded in both type-I and type-II chondrules. This corrosion occurred either during chondrule cooling after formation, or during chondrule reheating events, and suggests that S was present in the gas phase. After chondrule formation the CR chondrite parent asteroid accreted ¹⁶O-poor ice and experienced variable degrees of aqueous alteration, possibly due to heterogeneity in accreted ice or ammonia abundances and/or differing depth within the asteroid. Individual regions of the asteroid experienced different degrees of brecciation, perhaps a result of impacts, which fragmented chondrules and mixed together material that experienced different degrees of aqueous alteration. This process resulted in the heterogeneous nature of the CR chondrites.These observations constrain the formation conditions of a minor body, the CR chondrite parent asteroid, a remnant from the earliest stages of planet formation.
19

Etude pétrologique et expérimentale des chondrites CV-CK et conditions du métamorphisme des astéroïdes carbonés / Petrological and experimental study of CV-CK chondrites and conditions of metamorphism in carbonaceous asteroids

Chaumard, Noël 17 February 2012 (has links)
Les chondrites carbonées (CCs) sont des objets primitifs accrétés lors de la formation du Système Solaire. Composées en grande partie de chondres, de matrice et d’inclusions réfractaires, elles ont enregistré les hétérogénéités chimiques, isotopiques et minéralogiques de la nébuleuse solaire. Contrairement aux autres classes de chondrites, la grande majorité des CCs sont primitives (types pétrologiques 1 à 3). Elles n’ont donc pas subi de métamorphisme important sur leur corps parent. Toutefois, un groupe de CCs, les CKs, montre un métamorphisme thermique intense (types pétrologiques 4 à 6). Ces chondrites sont caractérisées par des matrices recristallisées, des olivines équilibrées à ∼Fa31, un degré d’oxydation important (olivines riches en NiO, rapport métal/magnétite proche de zéro), des teneurs en éléments réfractaires lithophiles intermédiaires aux CVs et aux COs, ou encore des compositions isotopiques en oxygène se situant dans le champ défini par les CVs et les COs. Les CKs ont été peu étudiées jusqu’au début des années 90, car peu nombreuses (seulement 210 classifiées au 6 décembre 2011) et de petite taille (masse médiane ∼33,5g). Leurs compositions isotopiques et chimiques laissent supposer l’existence d’un lien génétique avec les CV3. Les découvertes récentes de nouvelles CKs depuis 1990, et notamment de CK3 par le biais de collectes systématiques au Sahara et en Antarctique, permettent l’étude détaillée de l’évolution métamorphique des CKs, notamment à la transition 3–4. Ce travail a pour but de caractériser les conditions dans lesquelles s’est déroulé cet épisode métamorphique, et grâce à l’observation de plusieurs CK3–4, d’étudier la relation CV-CK. La caractérisation détaillée de l’évolution métamorphique de 19 CKs dont 5 CK3 a permis de confirmer que les différences observées entre les divers composants chondritiques (abondance, minéralogie, texture) des CVs et des CKs peuvent être expliquées par un épisode thermique secondaire de HT-BP (∼300–650°C) en conditions oxydantes (∼NNO). De plus, l’analyse de profils de diffusions dans les chondres des CKs indique des durées de métamorphisme intermédiaires à celles communément invoquées pour du choc (de quelques secondes à quelques jours) et pour la désintégration d’éléments à courte durée de vie (plusieurs millions d’années). Une série d’expériences réalisées en four 1 atmosphère avec contrôle de la fugacité d’oxygène nous a permis de reproduire les textures caractéristiques des CKs et d’obtenir une teneur en fer d’équilibre des olivines des CVs, valeur proche de celle mesurée dans les CKs. Cela semble donc confirmer que les CKs sont des CVs rééquilibrées. Par conséquent, la classification actuelle de ces chondrites en deux groupes distincts devrait être modifiée afin de rendre compte de l’existence de cette série métamorphique CV-CK continue. Nous proposons de considérer le chauffage radiatif comme cause possible du métamorphisme des CKs. Un modèle numérique nous a permis de confirmer que des météoroïdes carbonés avec des périhélies situés entre 0,07 et 0,15 UA peuvent être chauffés à des températures pouvant aller jusqu’à 780°C. Les tailles pré-atmosphériques estimées pour les CV-CK (de quelques centimètres à 2,5 mètres) sont compatibles avec ce type de processus. La fragmentation d’un corps parent homogène de type CV (possiblement l’astéroïde à l’origine de la famille d’Eos) pourrait former des météoroïdes qui, sous l’effet de phénomènes de résonances, seraient redirigés vers l’intérieur du Système Solaire et pourraient ainsi être métamorphisés par chauffage radiatif. Ce type de processus thermique secondaire n’étant efficace que pour de petits fragments d’astéroïdes, il ne doit pas être considéré comme un processus corps-parent stricto sensu. / Carbonaceous chondrites (CCs) are primitive objects accreted during the earliest stage of the Solar System formation. Mainly composed of chondrules, matrix and refractory inclusions, CCs recorded chemical, isotopic and mineralogical heterogeneities of the solar nebula. Unlike other chondrite classes, most CCs are primitive (petrologic types 1 to 3), i.e., they have not been affected by thermal parent-body processes. However, CK chondrites suffered an intense metamorphism (petrologic types 4 to 6). The CK group is characterized by recrystallized matrices, equilibrated olivines (∼Fa31), a high level of oxidation (Ni-rich olivines, metal/magnetite ratio close to zero), low contents of refractory inclusions, refractory lithophile abundances intermediate between CV and CO groups, and oxygen isotope compositions overlapping the CV and CO groups. CKs have been poorly studied until the 1990’s, in part due to the small number of classified samples (210 as of December 6th, 2011), and their small masses (median mass∼33.5g). Isotopic and major element compositions support a genetic link with CV3s. Since1990, recent discoveries of CKs, in particular of CK3s recovered by systematic Antarctic and Saharan collects, allow a detailed study of the CK metamorphic evolution, especially at the 3–4 transition. The objective of this study is the characterization of the conditions of metamorphism of CKs, and through analyses of several CK3–4 samples, the study of the CV-CK relationship. The detailed characterization of the metamorphic evolution of 19 CKs, including 5 CK3, confirms that observed differences between chondritic components in CVs and CKs (abundance, mineralogy, texture) can be explained by a secondary HT-BP thermal process (∼300–650°C) under oxidizing conditions (∼NNO). Moreover, durations of metamorphism obtained by the analysis of diffusion profiles in CK chondrules are intermediate between those commonly admitted for shock (few seconds to several days) and for short-lived radionuclides decay (several million years). An experimental study, using a 1-atmosphere furnace with controlled oxygen fugacity, provides additional arguments for the CV-CK relationship. We reproduced characteristic CK textures and obtained olivine iron contents of equilibrated CVs close to those measured in CKs. These experiments confirm that CKs can be considered as reequilibrated CVs. Thus, the current classification of CVs and CKs in two distinct groups should be modified in order to account for the existence of the CV-CK continuous metamorphic series from type 3 to 6. We propose to consider radiative heating as a possible cause of metamorphism for CKs. Numerical thermal modeling indicates that carbonaceous meteoroids with low perihelia (between 0.07 and 0.15 AU) can be heated at temperatures up to 780°C. Pre-atmospheric sizes estimated for CVs and CKs (from a few centimeters to 2.5 meters) support this thermal process. Fragmentation of an homogeneous CV-type parent body (possibly the parent asteroid at the origin of the Eos family) could be the source of meteoroids which, due to resonances, move toward the Sun and thus be metamorphosed by radiative heating. This secondary thermal process, affecting only small asteroid fragments, should not be considered as a parent-body process in the sense that it did not occur on the asteroid before its disruption.
20

[en] CO2 REACTIVITY OF MINERAL COALS, BIOMASS AND COKES / [pt] REATIVIDADE AO CO2 DE CARVÕES MINERAIS DE BIOMASSAS E COQUES

JERSON EDWIN ALVARADO QUINTANILLA 08 March 2013 (has links)
[pt] O presente trabalho apresenta a comparação da reatividade ao CO2 de Carvões Minerais, de Biomassas e Coques. Os ensaios realizados foram feitos empregando pastilhas de forma cilíndrica, tanto para materiais sem desvolatilização e desvolatilizados e sob uma temperatura de 1100 graus Celsius. É apresentado um breve histórico das matérias primas carbonosas e seus comportamentos com respeito à reatividade. Os experimentos de reatividade foram realizados em Forno elétrico tubular e em Termobalança, enquanto que as análises da porosidade foram realizadas no MEV. Os resultados mostraram que o material carbonoso que apresentou menor reatividade foi o Coque Verde de Petróleo (CVP), 65,89 por cento e 46,77 por cento, para amostras sem desvolatilização e desvolatilizadas, respectivamente. Por outro lado o Carvão Vegetal apresentou a maior reatividade, 98,05 por cento e 95,96 por cento, também para amostras sem desvolatilização e desvolatilizadas, respectivamente. No caso da nova biomassa empregada, o Carvão de Capim Elefante, a reatividade foi superior ao CVP, similar ao Coque Metalúrgico, mas muito distante do Carvão Vegetal. Com relação à porosidade, os materiais depois de reagirem com o CO2, tornaram-se mais porosos que as amostras virgens. Observou-se também em aumentos de 1800x, alguns materiais apresentaram a tendência de se aglomera formando pequenas esferas sobre a superfície das partículas. Na análise TGA, mediu-se para o Carvão Vegetal, a maior perda de peso em presença do CO2 (maior reatividade) e ainda, que Coque Verde de Petróleo sofreu a menor perda de peso (menor reatividade). O modelo cinético empregado, modelo de reação contínua, teve boa correlação, perto de 99 por cento, para os diferentes tipos de materiais. As energias de ativação aparente das biomassas foram menores que as determinadas para os carvões e coques. / [en] This work presents comparisons between the reactivity with CO2, measured at 1100 Celsius degrees, for Coals, Biomass and Cokes, shaped as cylindrical pellets, tested without volatilization and devolatilized. A brief historical review is presented for these carbonaceous materials together with their reactivity behavior. The experimental runs for the materials were made in a Tubular Furnace, Thermogravimetric Balance and the characterizations, as porosity, using a SEM, following the experimental procedure and parameters suggested in the bibliography. The obtained results showed that the carbonaceous material with the lowest reactivity was the Green Petroleum Coke, 65.89 per cent and 46.77 per cent , for samples without devolatilization and devolatilizated, respectively. The Charcoal, on the other hand rated 98.05 per cent and 95.96 per cent, also for samples without devolatilization and devolatilizated, respectively. In the case of new biomass used, Elephant Grass, its reactivity was superior to that of the Green Petroleum Coke, similar to the Metallurgical Coke but far greater than the Charcoal. As for the porosity, the devolatilized materials, after the reaction with CO2 became more porous than the virgin material, presenting also residues that tended to clump together forming small beads on the material’s surface, these were observed with increases at 1800x. The analyses TGA confirmed that Charcoal, submitted to CO2, lost more weight than the other tested carbonaceous materials and the GPC lost the least. The kinetic model, continuous reaction, showed good correlation, about 99 per cent , for every material. The apparent activation energies for the biomasses showed lower values than for the coals and cokes.

Page generated in 0.0383 seconds