• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 455
  • 114
  • 113
  • 104
  • 13
  • 12
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • Tagged with
  • 1032
  • 251
  • 140
  • 107
  • 94
  • 93
  • 77
  • 70
  • 67
  • 58
  • 57
  • 55
  • 54
  • 47
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Calcification by amorphous carbonate precursors: Towards a new paradigm for sedimentary and skeletal mineralization

Wang, Dongbo 11 January 2011 (has links)
A new paradigm for the formation of calcified skeletons suggests mineralization proceeds through amorphous calcium carbonate (ACC) precursors. The implications of this strategy in carbonate crystallization are widespread, particularly for understanding factors controlling impurity and isotopic signatures in calcium carbonates. The first chapter is a literature review of the biomineralization processes used by two important model organisms: the sea urchin larva and the foraminifera. Sea urchin larvae provide a thoroughly studied example of mineralization by an ACC pathway that is under biological control through regulation of protein chemistry and the local mineralization environment. A review of how foraminifera produce their test structures is also examined to explore the question of how organisms regulate the Mg content in proportion to the temperature their environments of formation. The second chapter demonstrates that acidic biomolecules regulate the composition of ACC for a suite of model carboxylated molecules. The physical basis for the systematic trend in Mg content is related to the ability of the affinity of the biomolecule for binding Ca versus Mg. The third chapter builds on these findings to explore the transformation of Mg-rich ACC precursors to calcites of exceptionally high Mg-contents that could not be produced by classical step-dominated growth processes. The data indicate that these materials are likely a result of a nucleation-dominated pathway. The final, fourth chapter develops Raman spectroscopy-based calibrations for determining Mg contents in ACC. The calibrations are based upon peak position or peak width of the carbonate υ₁ stretch. / Ph. D.
172

Micro-Scale Characterization of Quartzitic and Carbonate Sand Grains Using Nanoindentation

Geyin, Mertcan 27 June 2016 (has links)
Many offshore energy infrastructures are built on carbonate sands which are skeletal remains of marine organisms. Carbonate sands have a porous grain structure and are more compressible compared to quartzitic sand grains which are abundant in alluvial depositional environments. Consequently, there is a stark difference in material behavior of carbonate sands and it is difficult to characterize this distinct behavior with conventional methods. This study focuses on micro-scale characterization of carbonate and quartzitic sands to overcome this challenge. Experimental studies consist of nanoindentation tests performed on 17 different sands; 7 quartzitic and 10 carbonate sand samples. Mechanical properties of individual sand grains with different mineralogies are determined using nanoindentation. A force is applied by the nanoindenter on the grain surface and the load-displacement curve is developed. Modulus and hardness of individual sand grains are evaluated. Nanoindentation test results show that modulus and hardness of carbonate sands are significantly lower than quartzitic sands. For quartzitic grains, mechanical properties are relatively independent of indentation depth; whereas, for carbonate grains there is a considerable decrease in both Young's modulus and hardness values with increasing indentation depth. Results from this study can further be used for the evaluation of compressibility and strength characteristics of these two types of sands as part of a multi-scale analysis framework. / Master of Science
173

Establishing a physical and chemical framework for Amorphous Calcium Carbonate (ACC) biomineralization

Mergelsberg, Sebastian Tobias 05 July 2018 (has links)
Recent advances in high-resolution analytical methods have brought about a paradigm shift in our understanding of how crystalline materials are formed. The scientific community now recognizes that many earth materials form by multiple pathways that involve metastable intermediates. Biogenic calcium carbonate minerals are now recognized to develop by aggregating molecules or clusters to form amorphous phases that later transform to one or more crystalline polymorphs. Amorphous calcium carbonate (ACC) is now recognized as a precursor to CaCO₃ biominerals in a wide variety of natural environments. Recent studies suggest an ACC pathway may imprint a different set of dependencies from those established for classical growth processes. Previous ACC studies provided important insights, but a quantitative understanding of controls on ACC composition when formed at near-physiological conditions is not established. The Mg content of ACC and calcite is of particular interest as a minor element that is frequently found in final crystalline products in calcified skeletons. This three-part dissertation investigated biological and well-characterized synthetic ACC using high-energy x-ray methods, Raman spectroscopy, and mechanical tests. The findings establish chemical and physical properties of ACC in the exoskeleton of crustaceans and show Mg and P levels are tuned in the mineral component to optimize exoskeleton function that could be sensitive to ecological or environmental conditions. Calcite and chitin crystallinity exhibit a similar body-part-specific pattern that correlates directly with the mechanical strength of the exoskeleton. Insights from this study suggest precise biological control of ACC chemistry in the to regulate exoskeleton properties. Laboratory measurements using quantitative methods and compositions that approximate the physiological conditions of crustaceans, demonstrate at least two types of ACC are formed by controlling Mg concentration and alkalinity. We also find temporal changes in the short-range ordering of ACC after precipitation that is dependent upon carbonate content. The findings from this study provide a quantitative basis for deciphering relationships between ACC structures, solution chemistry, and the final transformation products under biologically relevant conditions. / Ph. D.
174

An Exploratory Study of the Systemic Effects of Lead, Trichloroethylene, and a Mixture of Lead and Trichloroethylene Provided Concurrently by Oral Gavage to Male Rats

Nunes, Jack D. 10 February 1999 (has links)
Forty rats, in groups of ten, were orally dosed with corn oil, corn oil and 2,000 mg/kg trichloroethylene (TCE), corn oil and 2,000 mg/kg lead carbonate, or a mixture of 2,000 mg/kg each TCE and lead carbonate, in an effort to determine whether or not dual administration of both TCE and lead would have an additive effect on neurotoxicity and overall health as indicated by behavioral and physiologic measurements and tissue pathology. A functional observational test battery (FOB) was performed before, during, and after dose administration to assess dose-related changes. The FOB testing assessed behavioral and physiologic measurements such as gait, open field activity, posture, grip strength, and handling reactivity. Pathological examination included assessing dosing related changes in the testis, spleen, heart, liver, kidney-adrenals, and brain. Results indicated that each compound was toxic individually, and that the combination of the two neurotoxicants provided conflicting indications of both reduced and additive toxicity. The toxicity of lead carbonate caused the vast majority of toxic consequences in the study. A reduction in body weight and an increased resistance to cage removal were the only statistically significant changes observed in the FOB that were due to concurrent administration of lead and TCE. Organ-to-body weight and organ-to-brain weight calculations showed evidence of a statistical difference between the lead and lead/TCE dosed animals for liver, kidney-adrenals, and body weight. The significance of these changes is not fully understood. / Master of Science
175

Advancing Methods to Measure the Atmospheric CO2 Sink from Carbonate Rock Weathering

Salley, Devon, Mr. 01 April 2016 (has links)
With rising atmospheric CO2 concentrations, a detailed understanding of processes that impact atmospheric CO2 fluxes is required. While a sink of atmospheric carbon from the continents to the ocean from carbonate mineral weathering is, to some degree, offset by carbonate mineral precipitation in the oceans, efforts are underway to make direct measurements of these fluxes. Measurement of the continental sink has two parts: 1) measurement of the dissolved inorganic carbon (DIC) flux leaving a river basin, and 2) partitioning the inorganic carbon flux between the amount removed from the atmosphere and the portion from the bedrock. This study attempted to improve methods to measure the DIC flux using existing data to estimate the DIC flux from carbonate weathering within the limestone karst region of south central Kentucky. The DIC flux from the Barren River drainage basin upstream from Bowling Green in southern Kentucky and northern Tennessee, and the upper Green River drainage basin, upstream from Greensburg, Kentucky, was measured, each for a year, using U.S.G.S. discharge data and water-chemistry data from municipal water plants. A value of the (DIC) flux, normalized by time and area of carbonate rock, of 4.29 g km-3 day-1 was obtained for the Barren River, and 4.95 kg km-3 for the Green. These compared favorably with data obtained by Osterhoudt (2014) from two nested basins in the upper Green River with values of 5.66 kg km-3 day-1 and 5.82 kg km-3 day-1 upstream from Greensburg and Munfordville, respectively. Additional normalization of the values obtained in this study by average precipitation minus evapotranspiration over the area of carbonate rock, or water available for carbonate dissolution, resulted in values of 5.61x107 g C (km3 H20)- 1 day-1 (grams of carbon per cubic kilometer of water, per day) for the Barren, and 7.43x107g C (km3 H20)-1 day-1 for the Green River. Furthermore, a statistical relationship between the total DIC flux and time-volume of water available for dissolution has been observed, yielding an r2 value of 0.9478. This relationship indicates that the primary variables affecting DIC flux for these drainage basins are time and the volume of water available for dissolution.
176

Recrystallization of pedogenic and biogenic carbonates in soil: Environmental controls, modelling and relevance for paleoenvironmental reconstructions and dating

Zamanian, Kazem 12 May 2017 (has links)
No description available.
177

Fácies sedimentares e assinatura isotópica de C-O-Sr da Formação Tamengo na mina Laginha, Faixa Paraguai Sul / Sedimentary facies and C-O-Sr isotopic signature of the Tamengo Formation at the Laginha mine, Southern Paraguay Belt

Gómez-Gutiérrez, Juan Camilo 26 April 2019 (has links)
Grupo Corumbá representa um dos mais completos registros sedimentares do Ediacarano na América do Sul, com afloramentos de rochas siliciclásticas e carbonáticas ao longo da Faixa Paraguai Sul. Estas rochas contêm um rico conteúdo fossilífero, com ocorrências dos primeiros organismos com estruturas biomineralizadas (Cloudina sp). Este trabalho apresenta o estudo faciológico e quimioestratigráfico da Formação Tamengo, Grupo Corumbá na mina Laginha, sucessão carbonática de 130 metros de espessura, em contato erosivo na base com brechas calcárias e no topo com os pelitos da Formação Guaicurus. Para a Formação Tamengo foram descritas 4 fácies sedimentares: brecha calcária intraformacional (F1), grainstone oolítico (F2), packstone/grainstone oolítico (F3) e ritmito (F4), as quais representam a evolução de uma rampa interna-média com geração de barras oolíticas, submetida à ação de correntes e ondas de alta energia. Os dados geoquímicos e isotópicos dos carbonatos mostram as condições geoquímicas dessa rampa carbonática depositada em ambiente marinho de águas rasas. Análises isotópicas de carbono e oxigênio foram realizadas em 130 amostras de rocha, coletadas a cada um metro. Com base nos teores de Rb e Sr determinados por FRX, as 10 amostras com altas concentrações de Sr foram selecionadas para análise isotópica de Sr e geoquímica elementar. Na base da sucessão, os carbonatos oolíticos mostram valores de ?13C (V-PDB) de cerca de -3,5 ?, aumentando para +6,0 ? nos primeiros 70 metros basais da sequência. O aumento nos valores de ?13C é interpretado como resultado do aumento da taxa de matéria orgânica soterrada. Acima desse intervalo, observa-se uma tendência homogênea dos valores ?13C, oscilando entre 1,7 e 3,4 ?. A estabilidade nestes valores positivos pode estar relacionada ao equilíbrio entre a taxa de matéria orgânica soterrada e a reciclagem do carbono pela degradação da matéria orgânica. Os valores de ?18O (V-PDB) são todos negativos e mostram uma tendência progressiva em toda a seção, de -1,8 na base a -9,3 ? na parte superior. Os valores de ?18O provavelmente não refletem as composições isotópicas primárias devido à alteração pós-deposicional. As razões 87Sr/86Sr variaram entre 0,7085 e 0,7089, as quais são concordantes com a evolução global para o final do Ediacarano. Os resultados obtidos permitem inferir que estas razões representam a composição isotópica da água do mar na época da deposição. A presente investigação contribui para o conhecimento das condições geoquímicas presentes nos ambientes marinhos rasos da rampa carbonática onde as rochas da Formação Tamengo foram depositadas e suas implicações no desenvolvimento das comunidades biológicas que evoluíram no final do Ediacariano. / The Corumbá Group represents one of the most complete sedimentary records of the Ediacaran in South America, with outcrops of siliciclastic and carbonate rocks along the southern Paraguay Belt. These rocks contain a rich fossiliferous content, with occurrences of the first organisms with biomineralized structures (Cloudina sp). This work presents the faciologic and chemostratigraphic study of the Tamengo Formation, Corumbá Group, at the Laginha mine, a 130 - m thick carbonate succession, in erosive contact at the base with carbonate breccias and at the top with pelites of the Guaicurus Formation. Four sedimentary facies have been described in the Tamengo Formation: intraformational breccia (F1) oolitic grainstone (F2) oolitic packstone/grainstone (F3) and rhythmites (F4), which represent the evolution of an inner-mid ramp with oolitic bars generation, subjected to the action of currents and waves of high energy. Elementar and isotope geochemistry of carbonates show the chemical conditions in the shallow-water marine environments of this carbonatic ramp. Carbon and oxygen isotopic analysis were performed on 130 calcareous samples, collected each meter. Based on the Rb and Sr contents determined by XRF, ten samples with high Sr concentrations were selected for Sr isotope and elemental geochemical analysis. The ?13C (V-PDB) values start with -3.5 ? at the base of oolitic carbonates, increasing to +6.0 ? in the first 70 meters at the base of the sequence. The increase in ?13C values is preliminarily interpreted as a result of the increase in the organic matter buried. Above this interval, a homogeneous trend is observed in the ?13C values, oscillating between 1.7 and 3.4 ?. The stability of these positive values can be related to a balance between the buried organic matter and carbon recycling by organic matter degradation. The ?18O (V-PDB) values are all negative and show a progressive trend throughout the section, from -1.8 at the base to -9.3 ? at the top. This trend of the ?18O values probably do not reflect the primary isotopic composition due to post-depositional alteration. 87Sr/86Sr ratios ranged between 0.7085 and 0.7089, which are in accordance with the global Sr isotope evolution of the late Ediacaran seawater. The obtained results allow us to infer that these ratios represent the isotopic composition of seawater at the time of deposition. The present study contributes to the knowledge of the geochemical conditions of the shallow marine environments of the Tamengo Formation, which has implications in the development of the biological communities that evolved at the end of the Ediacaran.
178

Nouveaux catalyseurs confinés pour la valorisation du CO2 / New confined catalyst for CO2 conversion

Lagarde, Florian 29 November 2018 (has links)
Les azaphosphatranes sont des entités relativement peu utilisées en catalyse organique. Cependant, ils se sont révélés être de bons catalyseurs pour la réaction de couplage entre des époxydes et le dioxyde de carbone pour former des carbonates cycliques. Les travaux de cette thèse portent sur l'optimisation de la réactivité des azaphosphatranes pour la synthèse de carbonates cycliques. Tout d'abord, une étude du confinement à différentes échelles a été réalisée. Les catalyseurs ont été étudiés en présence de silice mésoporeuse de type SBA-15 qui exacerbent leur activité. L'ajout d'un solvant ou de silice entraîne des modifications de mécanisme. La synthèse d'azaphosphatrane encagé au sein d'hémicryptophane a permis d'étudier l'effet d'un double confinement au sein d'une macromolécule et d'un matériau. Ensuite, les azaphosphatranes ont été fonctionnalisés à différentes positions par des groupements activateurs de l'époxyde ou du dioxyde de carbone. Enfin, différentes approches de synthèse de carbonates cycliques énantioenrichis ont été testées. La chiralité a été introduite par le biais de centres asymétriques sur les bras de l'azaphosphatrane ou par le confinement au sein d'un hémicryptophane chiral. Des silices chirales obtenues soit par empreinte moléculaire de proline ou par greffage covalent d’organosilanes chiraux ont également été testées. / Azaphosphatranes have rarely been applied as organocatalysts in organic transformations. Nevertheless, they have recently proved to be efficient single-component metal-free catalysts for the production of cyclic carbonates from epoxides and carbon dioxide. The goal of this work is to optimize the reactivity of azaphosphatrane based catalysts towards greater CO2 fixation into cyclic carbonates. First, they have been used in conjunction with mesoporous silica of the SBA family. A positive synergy, depending on the nature of the counter-anion, was demonstrated leading to better yields in cyclic carbonates. Adding a solvent or silica was shown to drive to a change in the reaction mechanism as evidenced by kinetic studies. Then, different activating functional groups were introduced at different position of the catalyst structure to further activate epoxide or carbon dioxide substrates. Finally, the kinetic resolution of racemic epoxides in the presence of CO2 was investigated. Different approaches to chiral induction have been explored including the introduction of asymmetric carbons on azaphosphatranes, the use of induced chirality with cyclotriveratrylene unit in hemicryptophane moiety. Chiral imprinted with amino acids and chiral grafted mesoporous silicas have also been studied.
179

Effect of calcium (II) and iron (II) on the precipitation of calcium carbonate and iron carbonate solid solutions and on scale inhibitors retention

January 2012 (has links)
Mineral scale formation is important to many areas of science and engineering, from drinking water treatment to oceanography to oil and gas production. In some cases mineral deposition is beneficial, as in water treatment for heavy metal or arsenic removal, and sometimes it is deleterious, as occurs in oil and gas production due to co-produced water. In either case, understanding the mechanisms of precipitation and inhibition is critical. Work in this thesis has focused on the impact of metal ions on mineral scale formation, and control. The results reveal that the addition of metal ions in the pill solution significantly improved the retention of scale inhibitors. Both BHPMP and DTPMP returns were significantly extended by the addition of Ca 2+ and Fe 2+ Also trace levels of Zn 2+ significantly enhanced the performance and retention of both BHPMP and DTPMP. The enhanced scale inhibition may be caused by a complex of metal ions with amine group of polyamino- polyphosphonates. It is known that the effectiveness of inhibitors varies upon the type of scale formed where it has been mentioned in the literature that common calcium carbonate inhibitors are not effective for preventing iron carbonate. Therefore, this work was also intended to investigate the impact of calcium and iron ions in the co-precipitation of iron-calcium carbonate solid solutions (Fe x Ca 1-x CO 3 ). Three different experimental methods were applied to investigate and predict the precipitation of Fe x Ca 1-x CO 3 : Free drift, continuous feeding, and constant composition experiments. The results from all methods showed that calcium carbonate was kinetically favored to precipitate rather than iron carbonate when the solution is supersaturated with respect to calcium carbonate and iron carbonate. In the constant composition experiments a series of solid solutions of iron-calcium carbonate ranging from calcium-rich to iron-rich was precipitated. Based upon the experimental results and the theoretical derivation, a new model in a form of logistic function was developed to predict the stoichiometry of Fe x Ca 1-x CO 3 as a function of the aqueous solution composition. The model showed an excellent representation for the experimental results with R 2 greater than 0.97 and 0.88 for Fe x Ca 1-x CO 3 and Ba x Ca 1-x CO 3 , respectively. The experimental equipment and procedures described in this work provide an effective means of producing and handling oxygen sensitive solid solutions. The precipitation kinetics of a number of solid solutions in aquatic systems could be studied by adapting the experimental design developed herein.
180

Integrated geological and petrophysical investigation on carbonate rocks of the middle early to late early Canyon high frequency sequence in the Northern Platform area of the SACROC Unit

Isdiken, Batur 18 February 2014 (has links)
The SACROC unit is an isolated carbonate platform style of reservoir that typifies a peak icehouse system. Icehouse carbonate platforms are one of the least well understood and documented carbonate reservoir styles due to the reservoir heterogeneities they embody. The current study is an attempt to recognize carbonate rock types defined based on rock fabrics by integrating log and core based petrophysical analysis in high-frequency cycle (HFC) scale sequence stratigraphic framework and to improve our ability to understand static and dynamic petrophysical properties of these reservoir rock types, and there by, improve our understanding of heterogeneity in the middle early to late early Canyon (Canyon 2) high frequency sequence (HFS) in the Northern Platform of the SACROC Unit. Based on core descriptions, four different sub-tidal depositional facies were defined in the Canyon 2 HFS. Identified depositional facies were grouped into three different reservoir rock types in respect to their rock fabrics in order for the HFC scale petrophysical reservoir rock type characteristic analysis. Composed of succession of the identified reservoir rocks, twenty different HFCs were determined within the HFC scale sequence stratigraphic framework. The overall trend in the HFCs demonstrate systematic coarsening upward cycles with high reservoir quality at the cycle tops and low reservoir quality at the cycle bottoms. It was observed in terms of systems tracts described within the cycle scale frame work that the overall stacking pattern for high stand systems tracts (HST) and transgressive systems tracts (TST) is aggradational. And, the reservoir rocks representing the HST are more porous and permeable than those of TST. In addition to that, it was detected that the diagenetic overprint on the HST reservoir rocks is more than that of the TST. According to the overall petrophysical observations, the grain-dominated packstone deposited during HST was interpreted as the best reservoir rock. Upon well log analysis on the identified reservoir rocks, some specific log responses were attributed to the identified reservoir rocks as their characteristic log signatures. / text

Page generated in 0.5188 seconds