Spelling suggestions: "subject:"carbonate minerals."" "subject:"arbonate minerals.""
11 |
Origin, distribution and paragenetic sequence of carbonate cements in the Ben Nevis Formation, White Rose Field, Jeanne d'Arc Basin, offshore Newfoundland, Canada /Normore, Leon Scott, January 2006 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2006. / Restricted until October 2007. Bibliography: leaves 182-200. Also available online.
|
12 |
Techniques for the analysis of carbonate-associated sulfate (CAS) concentrations in modern and ancient limestones and dolostones /Shim, Moojoon. January 2004 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2004. / Typescript. Includes bibliographical references (leaves 24-25). Also available on the Internet.
|
13 |
Geo-Chemo-Physical Studies of Carbon Mineralization for Natural and Engineered Carbon StorageGadikota, Greeshma January 2014 (has links)
Rising concentration of CO2 in the atmosphere is attributed to increasing consumption of fossil fuels. One of the most effective mechanisms to store CO2 captured from power plants is via geological injection of CO2 into formations that contain calcium and magnesium silicate and alumino-silicate minerals and rocks. The mechanism that ensures permanent storage of CO2 within rocks is mineral carbonation. When CO2 is injected into mineral or rock formations rich in calcium or magnesium silicates, they react with CO2 to form calcium or magnesium carbonates, which is also known as carbon mineralization. Calcium and magnesium carbonates are stable and insoluble in water. However, the kinetics of in-situ mineral carbonation involve CO2 hydration, mineral dissolution and formation of carbonates, and the relative rates of these phenomena when coupled, are not very well understood. In this study, the coupled interactions of CO2-reaction fluid-minerals were investigated to determine the optimal conditions for carbon mineralization, and to identify the chemical and morphological changes in the minerals as they react to form carbonates. Carbon mineralization in various minerals and rocks such as olivine ((Mg,Fe)2SiO4)), labradorite ((Ca, Na)(Al, Si)4O8), anorthosite (mixture of anorthite (CaAl2Si2O8), and basalt (rock comprising various minerals) were studied at high temperatures (Tmax = 185 oC) and high partial pressures of CO2 (PCO2, max = 164 atm) which are relevant for in-situ conditions. These minerals and rocks differ considerably in their chemical compositions and reactivity with CO2. A systematic comparison of the effects of reaction time, temperature, partial pressure of CO2, and fluid composition on the conversion of these magnesium and calcium bearing minerals and rocks showed that olivine was the most reactive mineral followed by labradorite, anorthosite, and basalt, respectively. Previous studies at Albany Research Center (Gerdemann et al., 2007; O'Connor et al., 2004) reported that a solution of 1.0 M NaCl + 0.64 M NaHCO3 was effective in achieving high extents of carbonation in olivine, heat-treated serpentine, and wollastonite. However, the independent effects of NaCl and NaHCO3 and their role in mineral carbonation were not sufficiently explained. In this study, the role of varying concentrations of NaCl and NaHCO3 on carbon mineralization of various minerals was elucidated. NaHCO3 buffered the pH and served as a carbon carrier, resulting in higher carbonate conversions. Except in the case of olivine, NaCl had a negligible effect on enhancing mineral carbonation. Unlike NaHCO3, NaCl does not buffer the pH or serve as a carbon carrier, but Cl- may serve as a weak chelating agent can complex with Mg or Ca in the mineral matrix to enhance dissolution. The competing effects of ionic strength and pH swings as the mineral dissolves and carbonation further complicate the role of NaCl on mineral carbonation. Based on the experimental methodologies developed to study carbon mineralization in minerals and rocks at high temperatures and pressures, alternative applications such as the remediation of hazardous alkaline wastes such as asbestos containing materials were identified. Asbestos is composed of chrysotile, a fibrous hydrated magnesium silicate mineral and a form of serpentine known to cause respiratory illnesses. By treating asbestos containing materials with CO2 in the presence of 0.1 M Na-oxalate, dissolution of chrysotile and precipitation of newer phases such as glushinkite (Mg(C2O4)* 2H2O) and magnesite (MgCO3) occurred, which reduced the chrysotile content in asbestos. Based on the methodologies for studying mineral dissolution and carbonation kinetics, and coupled mineral dissolution and carbonation behavior, a scheme for connecting laboratory scale experiments with simulations to estimate the uncertainties associated with carbon mineralization was developed. The effects of temperature, different dissolution rates, and varying levels of surface area changes due to passivation or reactive cracking on the rates of carbon mineralization were simulated using PhreeqC, a computer program developed for geochemical speciation calculations (Parkhurst & Appelo, 1999). Various studies proposed that microfractures and cracks may occur in geologic formations due to the extensive growth of carbonate crystals (Kelemen & Hirth, 2012; Kelemen & Matter, 2008; Matter & Kelemen, 2009; Rudge et al., 2010). Other studies have suggested that the formation of carbonates may plug the pore spaces and limit further reactivity (Hövelmann et al., 2012; King et al., 2010; Xu et al., 2004). The effects of changes in surface area due to the formation of microfractures or passivation due to carbonate growth on the rates of carbon mineralization were also simulated. Overall the results of these studies demonstrate the effect of various parameters on carbon mineralization and how these parameters can be connected to predict CO2 storage in mineral formations. The frameworks to connect laboratory scale experiments with simulations to determine carbon mineralization rates and to assess the risks associated with CO2 injection in reactive formations, can be used to direct future research efforts to predict the fate of injected CO2 with greater accuracy for sensor placement and optimization of CO2 monitoring technologies.
|
14 |
High-resolution sulfur isotope records of the Paleozoic and a detailed geochemical study of the late Cambrian SPICE event utilizing sulfur isotope stratigraphy, metal chemistry and numerial modelingGill, Benjamin Charles, January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Includes bibliographical references. Issued in print and online. Available via ProQuest Digital Dissertations.
|
15 |
REACTIVE TRANSPORT MODELLING OF DISSOLVED CO2 IN POROUS MEDIA : Injection into and leakage from geological reservoirsAhmad, Nawaz January 2016 (has links)
The geological sequestration of carbon dioxide (CO2) is one of the options of controlling the greenhouse gas emissions. However, leakage of CO2 from the storage reservoir is a risk associated with geological sequestration. Over longer times, large-scale groundwater motion may cause leakage of dissolved CO2 (CO2aq). The objectives of this thesis are twofold. First, the modelling study analyzes the leakage of CO2aq along the conducting pathways. Second, a relatively safer mode of geological storage is investigated wherein CO2aq is injected in a carbonate reservoir. A reactive transport model is developed that accounts for the coupled hydrological transport and the geochemical reactions of CO2aq in the porous media. The study provides a quantitative assessment of the impact of advection, dispersion, diffusion, sorption, geochemical reactions, temperature, and heat transport on the fate of leaking CO2aq. The mass exchange between the conducting pathway and the rock matrix plays an important role in retention and reactions of leaking CO2aq. A significant retention of leaking CO2aq is caused by its mass stored in aqueous and adsorbed states and its consumption in reactions in the rock matrix along the leakage pathway. Advection causes a significant leakage of CO2aq directly from the reservoir through the matrix in comparison to the diffusion alone in the rock matrix and advection in a highly conducting, but thin fracture. Heat transport by leaking brine also plays an important role in geochemical interactions of leaking CO2aq. Injection of CO2aq is simulated for a carbonate reservoir. Injected CO2-saturated brine being reactive causes fast dissolution of carbonate minerals in the reservoir and fast conversion of CO2aq through considered geochemical reactions. Various parameters like dispersion, sorption, temperature, and minerals reaction kinetics are found to play important role in the consumption of CO2aq in reactions. / <p>Research Funders:</p><p>(i) Higher Education Commission (HEC) of Pakistan</p><p>(ii) Lars Erik Lundberg Scholarship Foundation, Sweden</p>
|
16 |
Development of Innovative Carbon Mineralization Technologies to form Tailored Carbonates for Carbon-Negative Built EnvironmentWilliams, Jonah Martin January 2024 (has links)
Human activities since the beginning of the industrial revolution have led to vast amounts of CO₂ being emitted into the atmosphere (May 2023, 424 ppm; NOAA), which is principally responsible for anthropogenic climate change; the effects of which are expected to be globally devastating. In order to combat the unbalanced carbon cycle and reduce the effects of climate change, it is widely accepted that the adoption and use of carbon capture utilization and storage (CCUS) technologies will be necessary to limit warming to 2.0 degrees C (IPCC 2022). Among the industrial sectors to decarbonize, the built environment will be notably challenging, principally due to the challenges associated with reducing the carbon impact of structural materials, such as cement and steel. These construction industries currently account for roughly 8% of global emissions, with projections that this number will increase with a growing global population and more rapid urbanization, especially in developing areas.
The abysmal state of U.S. infrastructure decay (ASCE 2021 Grade: C-minus) is also concerning as the replacement of concrete, cement, steel, and asphalt will require and release numerous amounts of carbon; however, this also presents a unique opportunity to deploy CCUS technologies to capture and utilize carbon in the creation of next-generation built-environment materials. These materials include fillers, pozzolans, supplementary cementitious materials (SCMs), and geopolymers such as carbonates, amorphous silica/silicates, bio-chars, and structural allotropes of carbon, like crystalline carbon nanotubes (CNTs) or graphene. The production of these carbon neutral or even carbon-negative materials can be achieved through advanced ex-situ carbon mineralization reaction pathways and novel biomass-to-carbonate conversion technologies, such as alkaline thermal treatment (ATT). In the former, alkaline waste, such as landfilled concrete rich in Ca, can be processed to produce calcium carbonates. This captures atmospheric CO2 and also creates new filler materials which can be incorporated into construction materials. The latter reaction pathway, ATT, takes waste biomass and alkaline wastes as feedstocks and directly converts them into H2 gas and carbonates in a single reaction pathway conducted at moderate conditions (1 atm, 300 degrees C). Although advantageous, both of these synthesis pathways contain unique challenges related to kinetic barriers, conversion issues, mass transfer limitations, and the degree of carbon capture and utilization which can be achieved. Thus, the objective of this study is directed towards overcoming these limitations and coupling these two relatively understudied and novel reaction pathways as a tandem method for carbon sequestration and the creation of new building materials and clean energy.
First, the hydrometallurgical processing of waste concrete in a two-step aqueous dissolution and carbonation reactor system is explored. This system is developed and designed to process hydrated waste cement paste, which has extremely high Ca and Si contents. The kinetics of the dissolution process are detailed and the properties of the unreacted residue is examined, revealing a high surface area, amorphous Si-rich material which was shown to be an excellent clinker replacement in new cement mixtures. The dissolution kinetics were fit to a diffusion controlled reactive model, and methods to further increase the elemental extraction of Ca, Al, Fe, and Si, such as internal abrasive media, was also studied. The Ca-rich mother liquor was then carbonated at various conditions using CO₂ gas and the properties, uses, and potential CO₂ capture metrics of these Si-rich residues and calcium carbonates was detailed.
In an effort to explore alternative carbon mineralization processes, the use of novel leaching agents, such as regenerable ammoniacal salts was also studied. Typical dissolution and carbonation processes require copious amounts of commodity chemicals, such as acid and base; however, cycling of ammonia/ammonium, similar to the chemistries of the Solvay process, is a promising alternative. The use of ammonium chloride and ammonium bisulfate was studied in the context of material extraction from waste cement paste and subsequent carbonate formation. The process was assessed from a carbon circularity standpoint, revealing significant cost and emissions reductions when compared to conventional carbon mineralization for the treatment of alkaline waste. Additionally, the profiling of carboxylic acid ligands, such as formate, glutamate, acetate, and citrate, to further enhance kinetics during leaching were studied. These agents were found to significantly enhance both of these parameters, resulting in almost 100% of Ca material extraction in a single pass with a sodium citrate ligand.
Producing the metastable forms of anhydrous calcium carbonate, such as vaterite and aragonite, was heavily examined in the context of new built-environment building blocks as alternatives to conventional limestone. The production and use of these polymorphs has not been well studied or documented; yet, both vaterite and aragonite are expected to have niche market uses in a carbon-constrained world. The favorable conditions to synthesize vaterite was explored, revealing that a high carbonate to calcium molar ratio is necessary to stabilize this polymorph at ambient reaction conditions. Surface active salt species, such as NH₄+ and sulfate, also had a profound effect on vaterite morphology and stability. Aragonite was successfully stabilized at high carbonation reaction temperatures (~70 degrees C); however, the use of alternative crystallization systems, such as a semi-continuous system vs. traditional batch process was able to produce higher purity aragonite at lower temperatures (40-50 degrees C). The use of crystal seeding also showed remarkable templating abilities and allowed for aragonite production at room temperature (25 degrees C). Both polymorphs were shown to be exceptional fillers for cement through isothermal calorimetry, with aragonite also showing high yield stress development via rheometric testing adding to its potential use in advanced 3-D printed cements, plastics, and papers.
The alkaline thermal treatment of waste biomass derived from coastal marine sources was studied to convert biomass into carbonate materials in a carbon-negative manner, while producing H₂ as a valuable product. Various reaction conditions were profiled, including temperature, steam load, hydroxide utilized, and biomass source. A strong correlation was found between carbon conversion/H₂ yield and the basicity of the hydroxide salt, which matched well with thermodynamic calculations performed. These findings were utilized to inform more advanced and refined ATT reaction pathways, coupled with the use of novel regeneration schemes. One potential reactant regeneration pathway is through the use of molten salt electrolysis, in which carbonates are electrosplit into solid carbon (e.g., CNTs) and O₂. Eutectic regenerable alkaline hydroxide mixtures of Li, Na, and K were studied in their ability to convert biomass into electrochemically active carbonate salts mixtures. Interestingly, the content of LiOH in the salt greatly poisoned the biomass conversion potential; however, lithium is the most electroactive carbonate salt for downstream electrolysis. Finally, the electrolytic processing of these biomass-derived carbonate salts was shown to yield high amounts of CNTs, a valuable allotrope of carbon and significant strength enhancer of cementitious materials.
Lastly, a brief discussion of the combination of these two reactive pathways in the context of producing low-carbon or even carbon-negative next-generation built environment building materials is performed with respect to a circular material economy and scalability. From the results of these studies, recommendations are made for future research advancements to continue to accelerate CCUS activities and reaction pathways in the realm of the most difficult-to-decarbonize industries, such as the built environment.
|
17 |
The Mineralogical Composition of House Dust in Ontario, CanadaWoldemichael, Michael Haile 01 February 2012 (has links)
Despite increasing concern about the presence of heavy metals, pesticides and other toxins in indoor environments, very little is known about the physical and chemical composition of ordinary household dust. This study represents the first systematic investigation of the mineralogical composition of indoor dust in residential housing in Canada.
Specimens of dust were obtained from homes in six geographically separate cities in the Province of Ontario: two located on the metamorphic and igneous rocks of the Precambrian Canadian Shield (Thunder Bay and Sudbury), the other four located on Palaeozoic limestone and shale dominated bedrock (Barrie, Burlington, Cambridge, and Hamilton). Forty samples of household vacuum dust were obtained. The coarse fraction (80 – 300 µm) of this dust was subjected to flotation (using water) to separate the organic components (e.g. insect fragments, dander), natural and synthetic materials (e.g. fibres, plastics) from the mineral residue. The mineral fraction was then analyzed using quantitative point counting, polarizing light microscopy, powder X-ray diffraction and scanning electron microscopy methods.
Despite the great distances between the sampling localities and the distinct differences in bedrock geology, the mineral fraction of dust from all six cities is remarkably similar and dominated by quartz and feldspar, followed by lithic fragments, calcite, and amphibole. Some evidence of the influence of local geology can nevertheless be found. For example, a relatively higher proportion of sulphide minerals is observed in the two cities on the Canadian Shield where these minerals are clearly more abundant in the bedrock. Specimens from Sudbury, Canada’s largest mining centre located atop a nickel-sulphide mineral deposit, showed the highest sulphide contents. Quartz is the dominant mineral in all cities. All quartz grains have internal strain features and fluid inclusions that are indicative of a metamorphic-igneous provenance.
In all cities, sand is used on the streets as an abrasive for traction during the icy winter season. This sand is obtained in all cases from local glaciofluvial deposits that were ultimately derived principally from the rocks of the Canadian Shield in the last Pleistocene glaciations that affected all of Ontario. Thus, tracking in sand is the most plausible mechanism by which quartz was introduced into these homes since sampling was done, in all cases, in the winter season.
The results indicate that glacial deposits dominate the mineral composition of indoor dust in Ontario cities and that nature of the bedrock immediately underlying the sampling sites is relatively of minor importance.
|
18 |
The Mineralogical Composition of House Dust in Ontario, CanadaWoldemichael, Michael Haile 01 February 2012 (has links)
Despite increasing concern about the presence of heavy metals, pesticides and other toxins in indoor environments, very little is known about the physical and chemical composition of ordinary household dust. This study represents the first systematic investigation of the mineralogical composition of indoor dust in residential housing in Canada.
Specimens of dust were obtained from homes in six geographically separate cities in the Province of Ontario: two located on the metamorphic and igneous rocks of the Precambrian Canadian Shield (Thunder Bay and Sudbury), the other four located on Palaeozoic limestone and shale dominated bedrock (Barrie, Burlington, Cambridge, and Hamilton). Forty samples of household vacuum dust were obtained. The coarse fraction (80 – 300 µm) of this dust was subjected to flotation (using water) to separate the organic components (e.g. insect fragments, dander), natural and synthetic materials (e.g. fibres, plastics) from the mineral residue. The mineral fraction was then analyzed using quantitative point counting, polarizing light microscopy, powder X-ray diffraction and scanning electron microscopy methods.
Despite the great distances between the sampling localities and the distinct differences in bedrock geology, the mineral fraction of dust from all six cities is remarkably similar and dominated by quartz and feldspar, followed by lithic fragments, calcite, and amphibole. Some evidence of the influence of local geology can nevertheless be found. For example, a relatively higher proportion of sulphide minerals is observed in the two cities on the Canadian Shield where these minerals are clearly more abundant in the bedrock. Specimens from Sudbury, Canada’s largest mining centre located atop a nickel-sulphide mineral deposit, showed the highest sulphide contents. Quartz is the dominant mineral in all cities. All quartz grains have internal strain features and fluid inclusions that are indicative of a metamorphic-igneous provenance.
In all cities, sand is used on the streets as an abrasive for traction during the icy winter season. This sand is obtained in all cases from local glaciofluvial deposits that were ultimately derived principally from the rocks of the Canadian Shield in the last Pleistocene glaciations that affected all of Ontario. Thus, tracking in sand is the most plausible mechanism by which quartz was introduced into these homes since sampling was done, in all cases, in the winter season.
The results indicate that glacial deposits dominate the mineral composition of indoor dust in Ontario cities and that nature of the bedrock immediately underlying the sampling sites is relatively of minor importance.
|
19 |
The Mineralogical Composition of House Dust in Ontario, CanadaWoldemichael, Michael Haile 01 February 2012 (has links)
Despite increasing concern about the presence of heavy metals, pesticides and other toxins in indoor environments, very little is known about the physical and chemical composition of ordinary household dust. This study represents the first systematic investigation of the mineralogical composition of indoor dust in residential housing in Canada.
Specimens of dust were obtained from homes in six geographically separate cities in the Province of Ontario: two located on the metamorphic and igneous rocks of the Precambrian Canadian Shield (Thunder Bay and Sudbury), the other four located on Palaeozoic limestone and shale dominated bedrock (Barrie, Burlington, Cambridge, and Hamilton). Forty samples of household vacuum dust were obtained. The coarse fraction (80 – 300 µm) of this dust was subjected to flotation (using water) to separate the organic components (e.g. insect fragments, dander), natural and synthetic materials (e.g. fibres, plastics) from the mineral residue. The mineral fraction was then analyzed using quantitative point counting, polarizing light microscopy, powder X-ray diffraction and scanning electron microscopy methods.
Despite the great distances between the sampling localities and the distinct differences in bedrock geology, the mineral fraction of dust from all six cities is remarkably similar and dominated by quartz and feldspar, followed by lithic fragments, calcite, and amphibole. Some evidence of the influence of local geology can nevertheless be found. For example, a relatively higher proportion of sulphide minerals is observed in the two cities on the Canadian Shield where these minerals are clearly more abundant in the bedrock. Specimens from Sudbury, Canada’s largest mining centre located atop a nickel-sulphide mineral deposit, showed the highest sulphide contents. Quartz is the dominant mineral in all cities. All quartz grains have internal strain features and fluid inclusions that are indicative of a metamorphic-igneous provenance.
In all cities, sand is used on the streets as an abrasive for traction during the icy winter season. This sand is obtained in all cases from local glaciofluvial deposits that were ultimately derived principally from the rocks of the Canadian Shield in the last Pleistocene glaciations that affected all of Ontario. Thus, tracking in sand is the most plausible mechanism by which quartz was introduced into these homes since sampling was done, in all cases, in the winter season.
The results indicate that glacial deposits dominate the mineral composition of indoor dust in Ontario cities and that nature of the bedrock immediately underlying the sampling sites is relatively of minor importance.
|
20 |
Sedimentology, geochemistry and depositional environments of the 1175-570 Ma carbonate series, Sankuru-Mbuji-Mayi-Lomami-Lovoy and Bas-Congo basins, Democratic Republic of Congo: new insights into late Mesoproterozoic and Neoproterozoic glacially- and/or tectonically-influenced sedimentary systems in equatorial AfricaDelpomdor, Franck 07 June 2013 (has links)
The one of the most important Eras of the Earth history, i.e. Neoproterozoic (1000-542 Ma),<p>was an enigmatic period characterized by the development of the first stable long-lived ~1.1-<p>0.9 Ga Rodinia and 550-500 Ma Gondwana supercontinents, global-scale orogenic belts,<p>extreme climatic changes (cf. Snowball Earth Hypothesis), the development of microbial<p>organisms facilitating the oxidizing atmosphere and explosion of eukaryotic forms toward the<p>first animals in the terminal Proterozoic. This thesis presents a multidisciplinary study of two<p>Neoproterozoic basins, i.e. Bas-Congo and Sankuru-Mbuji-Mayi-Lomami-Lovoy, in and around the Congo Craton including sedimentology, geochemistry, diagenesis, chemostratigraphy and radiometric dating of carbonate deposits themselves.<p><p>The Mbuji-Mayi Supergroup sequence deposited in a SE-NW trending 1500 m-thick siliciclastic-carbonate intracratonic failed-rift basin, extends from the northern Katanga Province towards the centre of the Congo River Basin. The 1000 m-thick carbonate succession is related to the evolution of a marine ramp submitted to evaporation, with ‘deep’ shaly basinal and low-energy carbonate outer-ramp environments, marine biohermal midramp (MF6) and ‘very shallow’ restricted tide-dominated lagoonal inner-ramp (MF7-MF9) settings overlain by lacustrine (MF10) and sabkha (MF11) environments, periodically<p>submitted to a river water source with a possible freshwater-influence. The sequence stratigraphy shows that the sedimentation is cyclic in the inner ramp with plurimetric ‘thin’ peritidal cycles (± 4 m on average) recording a relative sea level of a maximum of 4 m, with fluctuations in the range of 1-4 m. The outer/mid ramp subtidal facies are also cyclic with ‘thick’ subtidal cycles characterized by an average thickness of ± 17 m, with a probable sealevel<p>fluctuations around 10 to 20 m. The geochemistry approach, including isotopic and major/trace and REE+Y data, allows to infer the nature of the dolomitization processes operating in each carbonate subgroup, i.e dolomitization may be attributed to evaporative reflux of groundwater or to mixing zones of freshwater lenses. The latest alteration processes occured during the uplift of the SMLL Basin. New ages, including LA-ICP-MS U-Pb laser ablation data on detrital zircon grains retrieved in the lower arenaceous-pelitic sequence (BI group), combined with carbon and strontium isotopic analyses, yielded a new depositional time frame of the Mbuji-Mayi Supergroup between 1176 and 800 Ma reinforcing the formerly suggested correlation with the Roan Group in the Katanga Province.<p><p>In the Democratic Republic of Congo, the Sturtian-Marinoan interglacial period was previously related to pre-glacial carbonate-dominated shallow marine sedimentation of the Haut-Shiloango Subgroup with stromatolitic reefs at the transition between greenhouse (warm) and icehouse (cold) climate periods, commonly marked by worldwide glacigenic diamictites and cap carbonates. This thesis highlights that these deposists record as a deepening-upward evolution from storm-influenced facies in mid- and outer-ramps to deepwater environments, with emplacement of mass flow deposits in toe-of-slope settings controlled by synsedimentary faults. In absence of diagnostic glacial features, the marinoan Upper Diamictite Formation is interpreted as a continuous sediment gravity flow deposition along carbonate platform-margin slopes, which occurred along tectonically active continental margins locally influenced by altitude glaciers, developed after a rift–drift transition. The maximum depth of the deepening-upward facies is observed in the C2a member. The<p>shallowing-upward facies exibit a return of distally calcareous tempestites and semi-restricted to restricted peritidal carbonates associated with shallow lagoonal subtidal and intertidal zones submitted to detrital fluxes in the upper C2b to C3b members.<p>The geochemistry highlights (i) the existence of a δ13C-depth gradient of shallow-water and deep-water carbonates; (ii) the carbonate systems were deposited in oxic to suboxic conditions; and (iii) all samples have uniform flat non-marine shale-normalized REE+Y distributions reflecting<p>continental detrital inputs in nearshore environments, or that the nearshore sediments were<p>reworked from ’shallow’ inner to mid-ramp settings in deep-water slope and outer-ramp<p>environments, during the rift-drift transition in the basin. The pre-, syn- and post-glacial<p>carbonate systems could record a distally short-lived regional synrift freshwater-influenced<p>submarine fan derived from nearshore sediments, including gravity flow structures, which are<p>attributed to regional tectonic processes due to a sudden deepening of the basin caused by<p>differential tilting and uplifting of blocks, related to the 750-670 Ma oceanic spreading of the<p>central-southern Macaúbas Basin.<p><p>Combining sedimentology, isotopes and trace elemental geochemistry, the thesis highlights<p>that the δ13C variations in the Neoproterozoic carbonates are complex to interpret, and can be<p>related to: (i) the existence of a δ13C-depth gradient; (ii) the exchange between isotopically<p>light carbon in meteoric waters and carbonate during lithification and early diagenesis; and<p>(iii) isotopic perturbations due to regional metamorphism. Considering the possible englaciation of the Earth (Snowball Earth hypothesis), the Mbuji-Mayi Supergroup and West<p>Congolian Group seem reflected the intimate relationship between glaciations and tectonic<p>activity during the break-up of the Rodinia supercontinent, followed by the rift–drift<p>transition, and finally the pre-orogenic period on the passive continental margin. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0887 seconds