• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetic studies of cardiometabolic traits

Riveros Mckay Aguilera, Fernando January 2019 (has links)
Diet and lifestyle have changed dramatically in the last few decades, leading to an increase in prevalence of obesity, defined as a body mass index >30Kg/m2, dyslipidaemias (defined as abnormal lipid profiles) and type 2 diabetes (T2D). Together, these cardiometabolic traits and diseases, have contributed to the increased burden of cardiovascular disease, the leading cause of death in Western societies. Complex traits and diseases, such as cardiometabolic traits, arise as a result of the interaction between an individual's predisposing genetic makeup and a permissive environment. Since 2007, genome-wide association studies (GWAS) have been successfully applied to complex traits leading to the discovery of thousands of trait-associated variants. Nonetheless, much is still to be understood regarding the genetic architecture of these traits, as well as their underlying biology. This thesis aims to further explore the genetic architecture of cardiometabolic traits by using complementary approaches with greater genetic and phenotype resolution, ranging from studying clinically ascertained extreme phenotypes, deep molecular profiling, or sequence level data. In chapter 2, I investigated the genetic architecture of healthy human thinness (N=1,471) and contrasted it to that of severe early onset childhood obesity (N=1,456). I demonstrated that healthy human thinness, like severe obesity, is a heritable trait, with a polygenic component. I identified a novel BMI-associated locus at PKHD1, and found evidence of association at several loci that had only been discovered using large cohorts with >40,000 individuals demonstrating the power gains in studying clinical extreme phenotypes. In chapter 3, I coupled high-resolution nuclear magnetic resonance (NMR) measurements in healthy blood donors, with next-generation sequencing to establish the role of rare coding variation in circulating metabolic biomarker biology. In gene-based analysis, I identified ACSL1, MYCN, FBXO36 and B4GALNT3 as novel gene-trait associations (P < 2.5x10-6). I also found a novel link between loss-of-function mutations in the "regulation of the pyruvate dehydrogenase (PDH) complex" pathway and intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and circulating cholesterol measurements. In addition, I demonstrated that rare "protective" variation in lipoprotein metabolism genes was present in the lower tails of four measurements which are CVD risk factors in this healthy population, demonstrating a role for rare coding variation and the extremes of healthy phenotypes. In chapter 4, I performed a genome-wide association study of fructosamine, a measurement of total serum protein glycation which is useful to monitor rapid changes in glycaemic levels after treatment, as it reflects average glycaemia over 2-3 weeks. In contrast to HbA1c, which reflects average glucose concentration over the life-span of the erythrocyte (~3 months), fructosamine levels are not predicted to be influenced by factors affecting the erythrocyte. Surprisingly, I found that in this dataset fructosamine had low heritability (2% vs 20% for HbA1c), and was poorly correlated with HbA1c and other glycaemic traits. Despite this, I found two loci previously associated with glycaemic or albumin traits, G6PC2 and FCGRT respectively (P < 5x10-8), associated with fructosamine suggesting shared genetic influence. Altogether my results demonstrate the utility of higher resolution genotype and phenotype data in further elucidating the genetic architecture of a range of cardiometabolic traits, and the power advantages of study designs that focus on individuals at the extremes of phenotype distribution. As large cohorts and national biobanks with sequencing and deep multi-dimensional phenotyping become more prevalent, we will be moving closer to understanding the multiple aetiological mechanisms leading to CVD, and subsequently improve diagnosis and treatment of these conditions.
2

Development and application of new statistical methods for the analysis of multiple phenotypes to investigate genetic associations with cardiometabolic traits

Konigorski, Stefan 27 April 2018 (has links)
Die biotechnologischen Entwicklungen der letzten Jahre ermöglichen eine immer detailliertere Untersuchung von genetischen und molekularen Markern mit multiplen komplexen Traits. Allerdings liefern vorhandene statistische Methoden für diese komplexen Analysen oft keine valide Inferenz. Das erste Ziel der vorliegenden Arbeit ist, zwei neue statistische Methoden für Assoziationsstudien von genetischen Markern mit multiplen Phänotypen zu entwickeln, effizient und robust zu implementieren, und im Vergleich zu existierenden statistischen Methoden zu evaluieren. Der erste Ansatz, C-JAMP (Copula-based Joint Analysis of Multiple Phenotypes), ermöglicht die Assoziation von genetischen Varianten mit multiplen Traits in einem gemeinsamen Copula Modell zu untersuchen. Der zweite Ansatz, CIEE (Causal Inference using Estimating Equations), ermöglicht direkte genetische Effekte zu schätzen und testen. C-JAMP wird in dieser Arbeit für Assoziationsstudien von seltenen genetischen Varianten mit quantitativen Traits evaluiert, und CIEE für Assoziationsstudien von häufigen genetischen Varianten mit quantitativen Traits und Ereigniszeiten. Die Ergebnisse von umfangreichen Simulationsstudien zeigen, dass beide Methoden unverzerrte und effiziente Parameterschätzer liefern und die statistische Power von Assoziationstests im Vergleich zu existierenden Methoden erhöhen können - welche ihrerseits oft keine valide Inferenz liefern. Für das zweite Ziel dieser Arbeit, neue genetische und transkriptomische Marker für kardiometabolische Traits zu identifizieren, werden zwei Studien mit genom- und transkriptomweiten Daten mit C-JAMP und CIEE analysiert. In den Analysen werden mehrere neue Kandidatenmarker und -gene für Blutdruck und Adipositas identifiziert. Dies unterstreicht den Wert, neue statistische Methoden zu entwickeln, evaluieren, und implementieren. Für beide entwickelten Methoden sind R Pakete verfügbar, die ihre Anwendung in zukünftigen Studien ermöglichen. / In recent years, the biotechnological advancements have allowed to investigate associations of genetic and molecular markers with multiple complex phenotypes in much greater depth. However, for the analysis of such complex datasets, available statistical methods often don’t yield valid inference. The first aim of this thesis is to develop two novel statistical methods for association analyses of genetic markers with multiple phenotypes, to implement them in a computationally efficient and robust manner so that they can be used for large-scale analyses, and evaluate them in comparison to existing statistical approaches under realistic scenarios. The first approach, called the copula-based joint analysis of multiple phenotypes (C-JAMP) method, allows investigating genetic associations with multiple traits in a joint copula model and is evaluated for genetic association analyses of rare genetic variants with quantitative traits. The second approach, called the causal inference using estimating equations (CIEE) method, allows estimating and testing direct genetic effects in directed acyclic graphs, and is evaluated for association analyses of common genetic variants with quantitative and time-to-event traits. The results of extensive simulation studies show that both approaches yield unbiased and efficient parameter estimators and can improve the power of association tests in comparison to existing approaches, which yield invalid inference in many scenarios. For the second goal of this thesis, to identify novel genetic and transcriptomic markers associated with cardiometabolic traits, C-JAMP and CIEE are applied in two large-scale studies including genome- and transcriptome-wide data. In the analyses, several novel candidate markers and genes are identified, which highlights the merit of developing, evaluating, and implementing novel statistical approaches. R packages are available for both methods and enable their application in future studies.

Page generated in 0.07 seconds